BEFORE THE NEW HAMPSHIRE PUBLIC UTILITIES COMMISSION

EXHIBIT

DE 16-576

ELECTRIC DISTRIBUTION UTILITIES

Development of New Alternative Net Metering Tariffs and/or Other Regulatory Mechanisms and Tariffs for Customer-Generators

> DIRECT TESTIMONY OF R. THOMAS BEACH ON BEHALF OF THE ALLIANCE FOR SOLAR CHOICE

OCTOBER 24, 2016

Executive Summary

This testimony on behalf of The Alliance for Solar Choice (TASC) responds to the Commission's request for proposals addressing the Legislature's direction in House Bill 1116 to develop new tariffs for net energy metering (NEM) in New Hampshire. The stated goals of HB 1116 are, first, to continue to allow reasonable opportunities for electric customers to invest in and to install renewable distributed generation (DG) behind the meter on their own premises; second, to provide fair compensation for this locally-produced power; and, third, to allocate the benefits and costs of these new, clean energy sources in a fair and transparent way among all ratepayers.

The first requirement of HB 1116 is that the Commission consider both the benefits and costs of renewable DG. This testimony proposes a benefit-cost methodology for valuing customer-sited DG resources. This approach builds upon the widely-used, industry-standard tests for assessing the cost-effectiveness of other types of demand-side resources, such as energy efficiency programs. These analyses assess the benefits and costs of DG resources from multiple perspectives, including those of the principal stakeholders in DG development, including (1) participating customer-generators, (2) other non-participating ratepayers, and (3) the utility system and society as a whole. The goal of the regulator should be to balance the interests of all of these stakeholders, who collectively constitute the public interest in developing DG technologies.

The Commission should adopt a benefit/cost methodology for net metered DG that has four key attributes:

- 1. Examine and balance the benefits and costs from the multiple perspectives of the key stakeholders.
- 2. Consider a comprehensive list of benefits and costs.
- 3. Use a long-term, life-cycle analysis.
- 4. Focus on NEM exports.

I discuss recent commission-sponsored benefit-cost studies of net-metered solar DG resources in Nevada, California, and Mississippi; all of these studies assessed the benefits and costs of NEM from the multiple perspectives of all stakeholders. I also discuss the subsequent unfortunate events in Nevada, where the DG industry evaporated when the Nevada commission decided to rely solely on a short-term, cost-of-service framework that does not share any of the above attributes. To avoid such a result in New Hampshire, the Commission should take care to develop a benefit-cost methodology that includes all four of the key features listed above.

Crossborder Energy

I present a close analysis of the net metering transaction, for several reasons. First, it illuminates how DG differs from other demand-side resources. DG customers are not just consumers of power, but also at times produce power for export to the utility system. Second, I discuss why the essence of net metering is valuing the power which DG customers will export to the grid. Third, I dispel several common myths about net metering, including the misplaced ideas that NEM customers use the grid more than regular utility customers, that a NEM customer with a low or zero bill means that the customer has not paid for its use of the grid, and that the grid provides a service to "store" DG output for future consumption.

The testimony reviews the specific benefits and costs that should be examined in establishing the cost-effectiveness of DG. All of these benefits and costs have been quantified in other similar studies, and well-accepted techniques are available for this task. If the Commission is uncertain about the magnitude of a specific benefit or cost, the default should not be to assign a zero value to that benefit or cost, but to examine several cases that span a range of reasonable values for this benefit or cost. **Figure ES-1** shows the quantification of the principal benefits of solar DG for the each of the utilities, expressed in 25-year levelized cents per kWh.

I use our preferred methodology to present benefit-cost analyses of netmetered distributed solar generation in each of the three investor-owned utility service territories in New Hampshire. These analyses conclude that solar DG is a cost-effective resource for all of these utilities, as the benefits equal or exceed the costs in the Total Resource Cost and Societal tests. The benefits and costs for non-participating ratepayers are also reasonably balanced, as shown by the Rate Impact Measure (RIM) test results. The RIM results indicate that there is no significant cost shift to non-participating ratepayers. In fact, in the long-run these other customers will also realize net benefits from DG development under net metering.

For example, the cost-effectiveness test results for Eversource's residential market are shown in the following **Figure ES-2**.

DER System Costs Customer Bill Savings Utility Avoided Costs Societal Benefits

Crossborder Energy

iii

And **Figure ES-3** shows the comparable results for Eversource's commercial customers.

The testimony next discusses how the results of the adopted methodology can be used to make cost of service or rate design changes that impact the balance of the interests of the affected stakeholders. Such changes are not needed today, given the results of our benefit-cost analysis, but could become indicated as solar penetration increases. The types of changes that the Commission should prioritize are those that align rates more closely with utility costs, such as time-of-use rates, or that continue to allow the greatest scope for customers to exercise the choice to adopt DG, such as a minimum bill. The Commission could also consider removing the public benefit charge and the electricity consumption tax from the NEM export rate, so that all customers contribute to these public purpose levies on the equitable basis of the power that they take from the utility system.

The Commission should avoid fixed charges, demand charges, or rate design changes that apply only to DG customers, due to problems with failure to reflect cost causation, lack of customer acceptance, undue discrimination, possible PURPA issues, and the future potential for customer bypass of the utility system.

Crossborder Energy

Finally, the testimony supports the continuation of net metering in New Hampshire without further limits on the aggregate capacity of NEM systems and with no change to the present 1 MW size limit for an individual NEM system. Any future review of net metering tariffs and associated rate designs should occur within the data-rich context of a utility's general rate case (GRC). Finally, it is reasonable to adopt a cost recovery procedure so that the utilities can recover lost revenues (net of avoided short-run costs) that result from new DG installations in the years prior to the utility's next GRC. Such timely cost recovery holds the utility harmless from DG development between rate cases. It would also remove the perverse incentive for the utility to discourage customers from investing in local renewable energy systems that will provide long-term benefits and lower overall system costs for all customers, as well as significant societal benefits for the economy and environment of New Hampshire.

Crossborder Energy

Table of Contents

Execu	itive Su	ummary	<u>page</u> i
I.	Introd	duction / Qualifications	1
II.	Back	ground	2
III.	A Be	nefit-Cost Methodology for Net-Metered DG	6
	А.	National Context: Toward a Consistent Approach	6
	B.	Key Attributes of a DG Benefit-Cost Methodology	8
	C.	The DG Customer as "Prosumer"	10
	D.	PURPA Matters	18
IV.	Speci	fic Quantifiable Benefits and Costs	20
V.	New	Benefit-Cost Studies for the New Hampshire Utilities	26
VI.	Appli	cation of the Benefit-Cost Methodology to Determine Rates	29
	A.	Net Metering Benefit-Cost Analyses and Rate Design	29
	B.	Demand Charges Are Problematic for Small DG Customers	30
	C.	Separate Rate Classes for DG Customers	33
	D.	Rate Design Changes to Adjust the NEM Benefit-Cost Balance	35
	E.	Policy Reasons to Encourage Renewable DG	38
VII.	Addit	tional Program Design Considerations	40

Appendices

Appendix A – CV of R. Thomas Beach
 Appendix B – Experience of Benefit-Cost Studies in Other States: Nevada, California, and Mississippi
 Appendix C – NHSEA Outline of Costs & Benefits of NEM Systems

Appendix D - The Benefits and Costs of Distributed Solar Generation in New Hampshire

1	I.	INTRODUCTION / QUALIFICATIONS
2		
3	Q1:	Please state for the record your name, position, and business address.
4	A1:	My name is R. Thomas Beach. I am principal consultant of the consulting firm
5		Crossborder Energy. My business address is 2560 Ninth Street, Suite 213A,
6		Berkeley, California 94710.
7		
8	Q2:	Please describe your experience and qualifications.
9	A2:	My experience and qualifications are described in my curriculum vitae, attached
10		as Appendix A. As reflected in my CV, I have more than 30 years of experience
11		in the natural gas and electricity industries. I began my career in 1981 on the staff
12		at the California Public Utilities Commission ("CPUC"), working on the
13		implementation of the Public Utilities Regulatory Policies Act of 1978
14		("PURPA"). Since 1989, I have had a private consulting practice on energy
15		issues and have testified or submitted testimony on numerous occasions before
16		state regulatory commissions in sixteen states. My CV includes a list of the
17		formal testimony that I have sponsored in various state regulatory proceedings
18		concerning electric and gas utilities, as of the end of 2015.
19		
20	Q3:	Have you testified previously before this Commission?
21	A3:	No, I have not.
22		
23	Q4:	Please describe more specifically your experience on benefit-cost issues
24		concerning distributed generation.
25	A4:	In addition to working on the initial implementation of PURPA while on the staff
26		at the CPUC, in private practice I have represented the full range of qualifying
27		facility ("QF") technologies – both renewable small power producers as well as
28		gas-fired cogeneration QFs – on avoided cost pricing issues before the utilities
29		commissions in California, Idaho, Montana, North Carolina, Oregon, Utah, and
30		Nevada. With respect to benefit-cost issues concerning renewable distributed

- 1 -

Crossborder Energy

1		generation ("DG"), I have sponsored testimony on net energy metering ("NEM")
2		and solar economics in California, Colorado, Idaho, Minnesota, New Mexico,
3		North Carolina, South Carolina, Texas, and Virginia. In the last three years, I
4		have co-authored benefit-cost studies of NEM or distributed solar generation in
5		Arizona, Colorado, North Carolina, and California. I also co-authored the chapter
6		on Distributed Generation Policy in America's Power Plan, a report on emerging
7		energy issues released in 2013 that is designed to provide policymakers with tools
8		to address key questions concerning distributed generation resources.
9		
10	Q5:	On whose behalf are you testifying in this proceeding?
11	A5:	I am testifying on behalf of The Alliance for Solar Choice ("TASC").
12		
13		
14	II.	BACKGROUND
15		
16	Q6:	What is net energy metering under New Hampshire law?
17	A6:	Net energy metering was first enacted into law in 1998 through HB 485 as a new
18		section of the Limited Electrical Energy Producers Act (RSA 362-A et seq.). The
19		definition of "net energy metering" added by HB 485 remains intact today:
20 21 22 23 24		"Net energy metering" means measuring the difference between the electricity supplied over the electric distribution system and the electricity generated by an eligible customer-generator which is fed back into the electric distribution system over a billing period. ¹
25	Q7:	Is the New Hampshire definition consistent with how the term "net metering"
26		is generally used across the country?
27	A7:	Yes, this definition is consistent with the prevailing definition of net metering used
28		in most states. The core feature of net metering, common across all jurisdictions
29		that offer the policy, is that it allows participating customers who install DG to
30		receive a credit based on the full volumetric portion of the retail rate for all

¹ See RSA 362-A:1-a(III-a).

- 2 -

1		electricity that is exported ("fed back") to the grid. The netting mechanism is an
2		accounting process whereby the credit which a customer receives for exported
3		energy is used to offset the purchase of electricity that is supplied to them by the
4		grid. The credit for exports offsets all volumetric rate components associated
5		with electricity supplied from the grid. In this way, a DG customer effectively
6		nets their production and consumption over a billing period, and pays a bill based
7		on the net of the two. In essence, the customer's meter rolls forward when the
8		customer takes service from the grid, and backward when the customer provides a
9		service to the grid by exporting power and running the meter backward. New
10		Hampshire's net metering policy is consistent with this prevailing definition and
11		conception of net metering.
12		
13	Q8:	Why did the Commission initiate this proceeding?
14	A8:	The Commission initiated this proceeding in response to New Hampshire House
15		Bill 1116 ("HB 1116"), which amended several provisions of state law
16		concerning NEM. Specifically, HB 1116 required the Commission is to initiate a
17		proceeding to develop new net metering tariffs and to determine whether and to
18		what extent these new NEM tariffs should be made available within each
19		regulated electric distribution utility's service territory. ²
20		
21	Q9:	Does HB 1116 set forth the state's goals for the new net metering tariffs?
22	A9:	Yes, it does. The Legislature's stated goals in HB 1116 include continuing to
23		allow reasonable opportunities for electric customers to invest in and interconnect
24		customer-generator facilities and to receive fair compensation for this locally-
25		produced power. The Legislature also expressed a goal of ensuring that the
26		benefits and costs of DG are allocated fairly and transparently among all
27		customers. The legislation's overarching goal is to promote a "balanced" energy
28		policy, which is defined as one that supports economic growth and energy

² See RSA 362-A:9, Paragraph XVI.

- 3 -

Crossborder Energy

1		diversity, independence, reliability, efficiency, regulatory predictability,
2		environmental benefits, a fair allocation of costs and benefits, and a modern and
3		flexible electric grid that provides benefits for all ratepayers.
4		and The costs for traces offers all volumetric rate comparents meaning
5	Q10:	In developing these new NEM tariff, what did HB 1116 require the
6	in the second	Commission to consider?
7	A10:	The Commission is required to consider the following:
8		• the costs and benefits of customer-generator facilities:
9		 how to avoid unjust and unreasonable cost shifting.
10		• the rate effects of NEM on all customers:
11		 alternative rate structures, including time based tariffs:
12		• whether there should be a limitation on the amount of generating capacity
13		eligible for the new NEM tariffs;
14		• the size of facilities eligible for the new NEM tariffs;
15		• timely recovery of lost revenue by the utility using an automatic rate
10		electric distribution utilities' administrative processes required to implement
18		such tariffs and related regulatory mechanisms. ³
19		concentions NEM. Specifically, TRU 16 required the Costnussion is serious
20	Q11:	The first requirement is an examination of the benefits and costs of
21		customer-sited DG facilities. Is this assessment the foundation for the other
22		aspects of NEM that the Commission must consider?
23	A11:	Yes. An accurate assessment of both the benefits and costs of customer-sited DG
24		is necessary in order to determine whether DG causes a level of cost shifting that
25		might be unjust and unreasonable as a result of substantial rate impacts on some
26		or all ratepayers, or whether this growing resource does not cause such
27		unreasonable cost shifts. For example, if the benefits of DG for both participating
28		and non-participating ratepayers exceed the costs to each of these groups, then
29		DG resources will not result in an unreasonable cost shift, and they are unlikely to
30		have adverse rate effects on any customers.
31		

³ Ibid.

1		The benefit-cost methodology also allows the Commission to assess how the
2		balance of benefits and costs is impacted by changes to the rates and rate
3		structures applicable to NEM customers - for example, whether time-based tariffs
4		or other rate design changes would better balance the benefits and costs of NEM.
5		The relative benefits and costs of net-metered DG also are important in
6		determining whether it is appropriate to limit the size and capacity of customer-
7		sited DG facilities.
8		
9		Accordingly, this testimony will focus first on assessing the benefits and costs of
10		net-metered solar DG resources for the three regulated utilities - Eversource,
11		Liberty, and Unitil – and then will use the results of that analysis to guide
12		recommendations for the design of new NEM tariffs.
13		
14	Q12:	In your opinion, would new net metering tariffs that are based only on the
15		costs imposed by DG/NEM customers comply with HB 1116?
16	A12:	No. New NEM tariffs that are based solely on cost of service analyses would not
17		comply with HB 1116. The law explicitly calls for new NEM tariffs that consider
18		the benefits as well as the costs of DG facilities installed by NEM customers. The
19		benefits of DG are principally the costs of the energy, generating capacity, and
20		delivery infrastructure that the distribution utility and generation suppliers will not
21		incur as a result of customers installing DG resources, over the life of the DG
22		facilities. There also will be quantifiable environmental benefits, from the costs
23		avoided by not having to mitigate the environmental impacts of the displaced
24		fossil resources, as well as local economic benefits for the state from a thriving
25		DG industry. Many of these benefits will be realized in the long-run, over the
26		20+ year lifetime of DG resources. New NEM tariffs that do not consider these
27		benefits, and that do not balance costs against these benefits, will not comply with
28		either the letter or the spirit of HB 1116.

Crossborder Energy

000012

- 5 -

1	III.	A BENEFIT-COST METHODOLOGY FOR NET-METERED DG
2		
3		A. National Context: Toward a Consistent Approach
4		
5	Q13:	Is there a developing consensus on the best practices for designing benefit-
6		cost analyses of behind-the-meter DG resources, including solar photovoltaic
7		(PV) systems, which should inform how the Commission undertakes this
8		analysis?
9	A13:	Yes, there is. It is important to recognize that the issues raised by the growth of
10		demand-side DG are not new. The same issues of impacts on the utilities, on non-
11		participating ratepayers, and on society as a whole arose when state regulators and
12		utilities began to manage electric demand growth through energy efficiency
13		("EE") and demand response ("DR") programs. To provide a framework for
14		analyzing these issues in a comprehensive fashion, the utility industry developed a
15		set of standard cost-effectiveness tests for demand-side programs. ⁴ These tests
16		examine the cost-effectiveness of demand-side programs from a variety of
17		perspectives, including from the viewpoints of the program participant, other
18		ratepayers, the utility, and society as a whole.
19		
20		This framework for evaluating demand-side resources is widely accepted, and
21		state regulators have years of experience overseeing this type of cost-effectiveness
22		analysis, with each state customizing how each test is applied and the weight
23		which policymakers place on the various test results. This suite of cost-
24		effectiveness tests is now being adapted to analyses of NEM and demand-side DG
25		more broadly, as state commissions recognize that evaluating the costs and
26		benefits of all demand-side resources – EE, DR, and DG – using the same cost-

⁴ See the *California Standard Practice Manual: Economic Analysis of Demand-Side Programs and Projects* (October 2001), hereafter "*SPM*," available at http://www.energy.ca.gov/greenbuilding/documents/background/07-J_CPUC_STANDARD_PRACTICE_MANUAL.PDF.

- effectiveness framework will help to ensure that all of these resource options are
 evaluated in a fair and consistent manner.
 - Each of the principal demand-side cost-effectiveness tests uses a set of costs and benefits appropriate to the perspective under consideration. These are summarized in **Table 1** below. "+" denotes a benefit; "-" a cost.

5
~
_
6

3

4

7

 Table 1: Demand-side Cost/Benefit Tests

Perspective (Test)	DG Customer (Participant)	Other Ratepayers (RIM)	Total Resource Cost to Utility or Society (TRC or Societal)
Capital and O&M Costs of the DG Resource	_		_
Customer Bill Savings or Utility Lost Revenues	+	ald theget and a	di zellari 1
Benefits (Avoided Costs) Energy Hedging/market mitigation Generating Capacity T&D, including losses Reliability/Resiliency/Risk Environmental / RPS	, theo rates may) st. This are press metimes is colled , theored particle ;	nded cost benefit MCOVER <mark>+</mark> mac Cos The RUM test so Base the PUM test so	theo as an + order to recepsores program p
Federal Tax Benefits	+	af grauti unverveit Standarmanna	+
Program Administration, Interconnection & Integration Costs	(stea) felaras	8 bia 7 <u>87</u> and 6	bauzs <u>an</u>

8

9

10

11

12

13

The key goal for regulators is to implement demand-side programs that produce balanced, reasonable results when the programs are tested from each of these perspectives. HB 1116 required the Commission to assess the rate effects of NEM on <u>all</u> customers, which requires consideration of all of these perspectives.

First, for the customers who install DG, a NEM program will need to pass the
Participant test if it is to attract customers by offering a reasonable economic
benefit for their participation – thus, DG customers' bill savings and tax benefits

- 7 -

Crossborder Energy

1 must provide a reasonable return given their cost to invest in and to operate a DG 2 system. 3 4 Second, the program also should be a net benefit as a resource to the utility 5 system and to society more broadly – thus, the Total Resource Cost (TRC) and Societal Tests compare the costs of the program to its benefits. In the TRC Test, 6 7 those benefits are principally the costs which the utility can avoid from the reduction in demand for electricity. The Societal Test adds the broader benefits to 8 9 citizens as whole, for example, economic and environmental benefits that may not 10 be reflected in utility rates. 11 12 Finally, the Rate Impact Measure (RIM) test gauges the impact on other, non-13 participating ratepayers: if the utility's lost revenues and program costs are greater 14 than its avoided cost benefits, then rates may rise for non-participating ratepayers 15 in order to recover those costs. This can present an issue of equity among 16 ratepayers. The RIM test sometimes is called the "no regrets" test because, if a 17 program passes the RIM test, then all parties are likely to benefit from the 18 program. However, it is a test that measures equity among ratepayers, not 19 whether the program provides an overall net benefit as a resource (which is 20 measured by the TRC and Societal tests). 21 22 **B**. Key Attributes of a DG Benefit-Cost Methodology 23 Q14: Please discuss the key attributes of your recommended methodology to assess 24 the benefits and costs of net metered DG resources. 25 26 A14: There are four key attributes: 27 1. Analyze the benefits and costs from the multiple perspectives of the key 28 29 stakeholders. As discussed above, it is important that the Commission assess 30 the benefits and costs of net metering from the perspectives of each of the 31 major stakeholders – the utility system as a whole, participating NEM

- 8 -

Crossborder Energy

customers, and other ratepayers – so that the regulator can balance all of these important interests. Examining all of these perspectives is critical if public policy is to support customer choice and equitable competition between DG providers and the monopoly utility. In terms of the goals of HB 1116, examining benefits and costs from multiple perspectives is necessary in order to ensure that there are no unreasonable cost shifts and to assess the effects of NEM on <u>all</u> ratepayers, both participants and non-participants.

9 2. Consider a comprehensive list of benefits and costs. The location. 10 diversity, and technologies of DG resources will require the analysis of a broader set of benefits and costs than, for example, traditional OF facilities 11 12 installed under PURPA. Renewable DG projects produce power in many 13 small (less than 1 MW) installations that are widely distributed across the 14 utility system. The power is produced and consumed either behind the meter or on the distribution system;⁵ indeed, each net-metered DG project is 15 16 generally associated with a load at least as large as the DG project's output,⁶ 17 which will limit the amount of power than is exported to the grid. For example, an important attribute of DG is its ability to serve loads without the 18 19 use of the transmission system. Accordingly, an analysis of DG benefits 20 should consider the avoided costs for reduced lines losses and for deferred 21 transmission and distribution capacity. Renewable DG also will avoid the 22 costs associated with environmental compliance at marginal fossil-fueled 23 power plants. On the cost side, the analysis should consider whether solar or 24 wind DG will result in new costs to integrate these variable resources. A 25 comprehensive examination of benefits and costs is necessary in order to 26 comply with the HB 1116 goal of new NEM tariffs that are fair to both participants and non-participants. The next section of this testimony discusses 27 28 in more detail the specific benefits and costs that should be considered and 29 that can be quantified. 30

31 32 33

34

1

2

3

4

5

6

7

8

3. Analyze the benefits and costs in a long-term, lifecycle time frame. The benefits and costs of DG should be calculated over a time frame that corresponds to the useful life of a DG system, which, for solar DG, is 20 to 30 years. This treats solar DG on the same basis as other utility resources, both

⁵ It is possible that, at high penetrations, DG output to a distribution circuit could exceed the minimum load on the circuit, as has occurred at some locations in Hawaii where, for example, more than 15% of customers on the islands of Oahu and Maui have installed solar. Such penetrations are not expected to be reached in New Hampshire for many years.

⁶ Like many states, New Hampshire limits the size of NEM systems, to a maximum of 1,000 kW. In addition, NEM systems must be used to offset the customer's own electricity requirements. *See* New Hampshire Code Of Administrative Rules, Part Puc 902.03.

demand- and supply-side. When a utility assesses the merits of adding a new power plant, or a new EE program, the company will look at the costs to build and operate the plant or the program over its useful life, compared to the costs avoided by not operating or building other resource options. The same time frame should be used to assess the benefits and costs of DG. HB 1116 requires the Commission to assess both the benefits and costs of net-metered DG. The benefits of long-lived DG resources cannot be assessed in a cost-ofservice study that focuses (1) only on costs and (2) only on a single test year, because many of the benefits of DG are long-term reductions in infrastructure costs that are not captured in the short time horizon of the cost-of-service studies used for ratemaking.

4. Focus on NEM exports. The retail rate credit for power exported to the utility is the essential characteristic of net metering. There would be no need for net metering if no power was exported, and without exports a DG customer appears to the utility grid as simply a retail customer with lower-than-normal consumption. From a legal perspective, PURPA requires the utility to interconnect with the DG customers and to allow the DG customer, at the customer's election, to use its privately-funded generation to serve its own load, on its own private property. It is only when the customer exports power to the utility – power to which the utility takes title at the meter and uses to serve other customers – that the question arises of how to compensate the DG customer for that exported power. This is the essential question that net metering answers, and the focus of the net metering analysis should be determining a credit for NEM exports that is fair to all affected parties.

Q15: Can you provide examples and the experience of other state commissions
 which have developed benefit-cost analyses of NEM from the three
 perspectives which you have described?

A15: Yes. Appendix B to this testimony discusses the benefit-cost studies of NEM
that have been conducted in Nevada, California, and Mississippi. The Nevada
example is also instructive in terms of the devastating impact on the DG market in
that state when the Public Utilities Commission of Nevada ("PUCN") developed
new NEM tariffs based only on a cost of service approach, with only minimal
consideration of the long-term benefits of solar DG.

36

1

2

3

4

5

6

7

8

9

10

11

12

13 14

15

16

17 18

19

20

21 22

23

24

25

26

- 10 -

Crossborder Energy

1		C. The DG Customer as "Prosumer"
2		
3	Q16:	The framework you have proposed draws on benefit/cost analyses used for
4		other types of demand-side programs. But isn't there a crucial difference
5		between DG and other demand-side resources: DG is generation that at
6		times can supply power to the grid, whereas EE and DR only reduce the
7		demand for power?
8	A16:	This difference exists, is important, and should be considered. DG located behind
9		the meter will both reduce the demand for power from the utility, and, at times,
10		will supply power to the utility. When a DG system produces more power than
11		the on-site load requires, the excess is exported to the grid, and the DG owner is
12		no longer a consumer, but becomes a supplier (i.e. a generator). Some have
13		applied a new label - "prosumers" - to DG customers in recognition of this dual
14		role. Appreciating these multiple roles is important, and should be considered in
15		establishing the framework for evaluating the benefits and costs of DG.
16		
17	Q17:	Please explain these multiple roles in more detail, using the example of a
18		typical residential NEM customer.
19	A17:	To illustrate in detail how net metering works, Figure 1 shows the three different
20		"states" of a residential net-metered PV system over the course of a day:

The "Power Expert, or Net Morring, State," In the state, the skit is high overhead, and PV production excels the concourt's instantageous use. The on-ante solar power serves the contenter's critical, od, and excess PV generation flows onto the utility's distribution extract. This utility instantageous backward, producing a cell or contents, the solar customary is backward, producing a cell or contents, the solar customary is first an educer of power, i.e. a generation. The relating excit out is also is producer of power, i.e. a generation. The states account the solar observation of power, i.e. a generation. The states including each it

Combarder Ruman

- 11 -

Figure 1: The Three States of Net Metering

The "Retail Customer State." There is no PV production – for example, at night. At this time, the customer is a regular utility customer, receiving its electricity from the grid. The utility meter rolls forward, and the customer pays the full retail rate for this power.

The "Energy Efficiency State." In this state, the sun is up, and there is some PV production but not enough to serve all of the customer's instantaneous load. The customer is supplied with power from the solar PV system as well as with power from the utility. Onsite solar reduces the customer's load on the utility's system in the same fashion as an energy efficiency measure. None of the solar customer's PV production flows out to the utility grid, the meter continues to roll forward, and the customer will pay the utility the full retail rate for his net usage from the grid during these hours.

• The "Power Export, or Net Metering, State." In this state, the sun is high overhead, and PV production exceeds the customer's instantaneous use. The on-site solar power serves the customer's entire load, and excess PV generation flows onto the utility's distribution circuit. The utility meter runs backward, producing a net metering credit for the solar customer. In these hours, the solar customer is no longer just a consumer, but is also a producer of power, i.e. a generator. The net metering credit is the solar customer's compensation for the generation it is supplying to the

- 12 -

Crossborder Energy

16

17

18 19

20

21

22

23

24

25

26

2 3

.

1 grid. As a matter of physics, the exported power will serve neighboring 2 loads with 100% renewable energy, displacing power that the utility 3 would otherwise generate at a more distant power plant and deliver to that 4 local area over its transmission and distribution system. 5 6 This state is the only one in which the customer's generation touches the 7 utility's distribution system or in which a bill credit is produced. In 8 typical PV installations, the solar output exported to the utility is less than 9 half of total PV production, with the exact export percentage depending on 10 (1) the size of the PV system relative to the customer's usage and (2) the 11 hourly profile of the host customer's load. Residential solar customers 12 tend to export a higher percentage of their power output than commercial 13 solar customers. 14 15 Q18: What do you conclude from this description? 16 A18: On-site generation from customer-sited PV that is not exported, i.e., electricity 17 generated in the Energy Efficiency State in Figure 1, does not require net 18 metering. In that case, the customer simply uses his on-site generation to reduce 19 his load, and to the utility the installation of such a DG system appears no 20 different than if the customer had installed a more efficient air conditioner or 21 simply decided to reduce his power usage in the middle of the day. In fact, if the 22 solar customer did not export power to the grid and 100% of the solar output was 23 consumed on-site, there would be no need for NEM. 24 25 Thus, the essence of NEM is the ability of a customer with a solar PV system to 26 "run the meter backwards" when the customer has more generation than the on-27 site load and is serving as a generation source for the utility system. When the 28 meter runs backward, the DG customer receives credit for his generation exports 29 in the form of a retail rate credit from the utility. In the accounting used to 30 calculate the DG customer's bill, the customer can use these credits to offset the cost of usage from the grid when the meter runs forward. 31 32 33 Q19: Does the fact that DG customers can be both consumers and producers of electricity mean that they make more use of the distribution utility's system 34 35 than regular utility customers?

- 13 -

Crossborder Energy

A19: No. The DG customer either imports power from, or exports power to, the utility's distribution system. When the DG customer imports power from the utility, the customer is using the electricity system (including generation, transmission, and distribution), and the meter runs forward. The customer pays the standard tariff rate for that service. This is no different than how a non-DG customer uses the system.

1

2

3

4

5

6

7

23

8 When the DG customer exports power, it is not the DG customer who is using the 9 distribution system, it is the distribution utility and the DG customer's neighbors, 10 because the title to the exported power transfers to the utility at the solar 11 customer's meter. The utility then uses the exported NEM generation to serve the 12 neighbors' loads. This transaction is no different than when the distribution 13 utility receives power from any other type of generator – the generator is not 14 responsible for and does not have to pay to deliver the power to the utility's other 15 customers. Instead, that delivery service becomes the distribution company's 16 responsibility when it accepts and takes title to the exported power at the 17 generator's meter. The utility is fully compensated for this distribution service 18 when the other customers (including the neighbors) pay the retail rate to have this 19 power delivered to them. Further, the generator is responsible for the incremental 20 costs of interconnecting to the distribution company's system to enable the 21 reliable acceptance and delivery of its exported power, and these costs can be 22 substantial for larger DG installations.

As a matter of fact, the distribution company will save money by using the DG customer's exported power to serve the neighbors, because the utility will avoid the costs of the power generated at a more distant power plant and the costs that the utility would have incurred to deliver the power to that local area over its distribution system. Moreover, the utility will also avoid the future costs of incremental amounts of wholesale generation, regional transmission, and expansions to its own distribution system. The essential public policy issue with

- 14 -

1		net metering is whether these "avoided costs" which the utility saves are less than,
2		equal to, or greater than the sum of (1) the net metering credit that the utility
3		provides to the solar customer and (2) the utility's integration and program costs.
4		
5	Q20:	Do DG customers cause the local utility to incur distribution costs which the
6		DG customers are not paying?
7	A20:	No. The fact that DG customers export power to the grid does not mean that they
8		should pay for the costs which the distribution utility incurs to deliver that power,
9		beyond the interconnection costs required for the utility to accept those exports.
10		The "two-way" power flows which they may create do not necessarily increase
11		utility costs, particularly at today's penetration of DG, and can reduce the utility's
12		distribution system costs by making more capacity available on the upstream
13		portions of the distribution system. As the penetration of DG increases –
14		particularly if it reaches levels such as those now seen in Hawaii – further analysis
15		may be needed to determine whether and by how much more two-way power
16		flows increase utility costs. However, at today's penetration of DG in New
17		Hampshire, DG customers are not causing the utilities to incur costs which the
18		Company is not collecting from those customers.
19		
20	Q21:	If a NEM customer ends up with a small, zero, or even negative bill at the
21		end of a month, does this mean that the NEM customer is not paying for the
22		utility service the customer is receiving?
23	A21:	Absolutely not. First, whenever the solar customer uses the utility system (by
24		importing power and rolling the meter forward), the solar customer pays fully for
25		the use of the utility system, at the same rate as any other customer. If the solar
26		customer ends the month with a small, zero, or even a net credit bill from the
27		utility, this is the result of crediting the customer for the value of the power which
28		the customer supplies to the utility (from exporting power and running the meter
29		backwards). In some months, these credits can more than offset the solar
30		customer's costs of utility service when the customer imports power and the meter

- 15 -

1		runs forward. However, these credits are not the result of the solar customer's use
2		of the utility system; instead, they are the means to account for the service which
3		the DG customer has provided to the utility, in the form of exported generation
4		provided to the utility at the meter. Thus, the solar customer has paid fully for all
5		actual use which that customer has made of the utility system, even though the
6		customer's net bill at the end of the year may be small, zero, or even a net credit.
7		There is the public policy issue of whether the bill credits for exported power at
8		the retail rate are the right credit for those exports – and this case should focus on
9		that issue – but this does not change the fact that the solar customer has paid fully
10		for his or her actual use of the utility system.
11		
12	Q22:	Doesn't the DG customer require the presence of the grid for his solar system
13		to operate and to produce power?
14	A22:	Yes, of course. But this is no different than any electric customer who cannot
15		receive service from the utility unless they are interconnected to the grid. The
16		difference is that the DG customer is also in a position to provide a service to the
17		utility as a result of the customer's installation of onsite generation.
18		
19	Q23:	Does the utility incur costs to "stand by" to serve a solar customer when the
20		solar customer is exporting power to the grid?
21	A23:	No. The costs which the utility incurs to serve a solar customer are no different
22		than those it incurs to stand by to serve a regular utility customer whose usage for
23		periods may be very low – for example, in the middle of the day when the
24		occupants of a house are away at work and school – but who may suddenly
25		impose a load on the system. As a consumer, a solar customer looks like a
26		standard customer who uses power in the morning, evening, and at night, but who
27		turns everything off in the middle of the day, as illustrated by the dashed "Load
28		on the Grid" line in Figure 1. Such a customer may come home unexpectedly in
29		the middle of the day, turn on the air conditioner and run an appliance, and
30		produce a sudden spike in usage. But these load fluctuations are something the

- 16 -

Crossborder Energy

utility is well-prepared to serve on an aggregate basis, and the costs of such normal "stand by" service are included in the utility's regular rates.

1

2

3 4

5

6

7

8

9

Similarly, a solar customer may suddenly impose a demand on the system if a cloud temporarily covers the sun in the middle of the day. Again, however, this variability is manageable due to the small sizes and geographic diversity of solar DG systems – for example, at the time one PV system is being shaded, another will be coming back into full sunlight.

10It is possible that, as solar penetration increases, the aggregate variability of all11solar customers' electric output may add to the variability of the power demand12that the utility must serve, and impose additional costs for regulation and13operating reserves on the system operator. The costs of meeting this added14variability is one of the factors considered in the studies that estimate integration15costs for solar resources. Such studies in other states have shown that integration16costs are low at the current level of solar DG penetration.

17 NEM service is also distinguishable from the standby service that the utility 18 provides to large industrial customers who have their own on-site generation, such 19 as combined heat and power ("CHP") units. These large customers typically are 20 served with dedicated transmission or distribution circuits that may be used fully 21 only sporadically, when the customer's CHP unit is down. As a result, there is 22 some logic in assessing a demand or reservation charge to cover the costs of these 23 dedicated facilities that are necessary to provide backup service. In contrast, the 24 diversity of loads on distribution circuits serving smaller NEM customers, plus 25 the facts that NEM systems will not all fail at once and their penetrations today

⁷ For example, see the Black & Veatch solar integration study for Arizona Public Service, "Solar Photovoltaic (PV) Integration Cost Study" (B&V Project No. 174880, November 2012). Also, *Duke Energy Photovoltaic Integration Study: Carolinas Service Areas* (Battelle Northwest National Laboratory, March 2014); hereafter the "Duke Integration Study." The Duke Integration Study calculates that, with 673 MW of PV capacity on the Duke utility systems in 2014, integration costs are about \$0.0015 per kWh. See Table 2.5 and Figure 2.51.

1		are low, allows the utility to provide service to NEM customers without
2		significant changes or added costs on the existing distribution system.
3		
4	Q24:	Doesn't the utility incur costs to store the excess kWh produced by NEM
5		systems, allowing the NEM customer to "bank" kWh which the customer
6		uses later when the meter is rolling forward?
7	A24:	No. Net metering does not involve the storage of electricity, or of energy in any
8		form. This idea is one of the common myths of net metering. Again, the NEM
9		customer is both a consumer and generator of electricity. When the NEM
10		customer is a generator, exporting power in excess of the onsite load, as a matter
11		of physics that generation is immediately consumed by nearby customers. In no
12		way is the power stored for later use. When the solar customer later consumes
13		power from the grid – for example, after the sun sets – the power used is
14		generated and transmitted by the utility at that later time. The fact that NEM
15		credits from exports are used to offset the costs of subsequent usage simply
16		represents an accounting transaction - offsetting a credit with a debit on the
17		customer's account by changing the direction that the meter is recording; it does
18		not represent any actual use of the grid to "store" or "bank" electrons or energy.
19		The utility does not incur any costs to "store" electrons for the NEM customer.
20		
21		D. PURPA Matters
22		
23	Q25:	Please discuss the implications for evaluating NEM of the fact that most DG
24		customers are "qualifying facilities" (QFs) under the Public Utilities
25		Regulatory Policies Act of 1978 (PURPA).
26	A25:	As generators, renewable DG customers typically have legal status as QFs under
27		PURPA. As a result, the serving utility is required under this federal law to do the
28		following:
29		• to interconnect with a customer's renewable DG system,
30		

- 18 -

Crossborder Energy

1 to allow a DG customer to use the output of his system to offset his on-site 2 load, and 3 4 to purchase the excess power exported from such systems at a state-5 regulated price that is based on the utility's avoided costs.⁸ 6 7 These provisions of federal law are independent of whether a state has adopted 8 NEM; thus, the adoption of NEM only impacts the accounting credits which the 9 customer-generator receives for power exports to the grid, and the analysis of the 10 economics of NEM should focus on those exports. 11 12 An important implication of the focus on exports is that, even if it is found that there is a "cost shift" from solar DG customers to non-participating ratepayers, 13 14 any calculation of such a cost shift should only consider the power exported by 15 DG customers, not the DG output that a customer uses on-site, behind the meter, 16 without the power ever touching the grid. As noted above, DG exports are 17 typically a minority, typically 30% to 50%, of DG production. There are always 18 cost shifts when a customer reduces the demand placed on the grid, or shifts load 19 to a different time period, as the result of many types of actions that utilities and 20 regulators encourage - energy efficiency, demand response, or using DG to serve your own load. Such actions by DG customers should not be singled out, 21 22 penalized, or treated differently than other steps that consumers take to manage 23 their energy demand and reduce their utility bills. 24 Q26: Does PURPA also impact the rates for the sale of power from an electric 25 26 utility to DG customers? 27 A26: Yes. As QFs, DG customers also are governed by the FERC's rules concerning 28 the sale of power from utilities to QFs. These rules specify that QFs have the 29 right to purchase power at rates which are just and reasonable, that do not 30 discriminate against QFs in comparison to the utility's other retail rates, and that

⁸ The PURPA requirements can be found in 18 CFR §292.303.

- 19 -

Crossborder Energy

1	are based on accurate data and consistent system-wide costing principles. ⁹	
2	Significantly, the FERC rules create a "safe harbor" for the utility against claims	
3	of discrimination if its QFs pay the same rates as similar customers:	
4 5 6 7 8 9	Rates for sales which are based on accurate data and consistent systemwide costing principles shall not be considered to discriminate against any qualifying facility to the extent that such rates apply to the utility's other customers with similar load or other cost-related characteristics.	
10		
11	IV. SPECIFIC QUANTIFIABLE BENEFITS AND COSTS	
12		
13	Q27: Please list and provide comments on the specific benefits and costs that	
14	should be quantified in the net metering methodology.	
15	A27: There are several literature reviews or meta-studies which have reviewed the	
16	existing NEM/DG benefit/cost studies and have summarized the benefits and	
17	costs included in this growing literature:	
18 19 20 21 22 23 24 25 26 27	 A 2013 literature review from the Vermont Commission.¹⁰ The Rocky Mountain Institute's (RMI) 2013 meta-analysis of solar DG benefit and cost studies.¹¹ The New York State Energy Research and Development Authority (NYSERDA) has conducted a literature review of NEM benefit/cost studies, with assistance from Energy and Environmental Economics, in preparation for a NEM study in New York.¹² Based on this literature, several recent studies have formulated recommended 	
28	approaches to conducting such analyses, including the specific benefits and costs	;

⁹ 18 CFR §292.305(a) and (b). Also see "What are the benefits of QF status?" on the FERC website: http://www.ferc.gov/industries/electric/gen-info/qual-fac/benefits.asp.

¹⁰ This literature review, as well as the report and analysis of net metering that the Vermont Commission completed, are available at

http://publicservice.vermont.gov/topics/renewable_energy/net_metering.

¹¹ Rocky Mountain Institute (RMI), "A Review of Solar PV Benefit and Cost Studies" (July 2013), available at http://www.rmi.org/Knowledge-Center%2FLibrary%2F2013-13 eLabDERCostValue.

¹² See the November 10, 2014 NYSERDA presentation listed at <u>http://ny-sun.ny.gov/About/Stakeholder-Meetings.aspx</u>.

1	that should be considered. ¹³ These lists of benefits and costs are also consistent
2	with the list of proposed costs and benefits of net metering systems that the New
3	Hampshire Sustainable Energy Association ("NHSEA") provided in the technical
4	workshops, and that is included as Appendix C. In addition, other "value of
5	solar" studies, such as a March 2015 study commissioned by the Maine Public
6	Utilities Commission (the "Maine Study"), ¹⁴ have focused on one side of the
7	benefit-cost equation – the long-term benefits of distributed solar generation.
8	Finally, cost effectiveness analyses of other types of demand-side programs also
9	draw upon the same categories of benefits and costs, recognizing that DG
10	introduces a new category of integration costs for the power exported to the grid.
11 12	Based on the above sources and our prior experience with such studies, Tables 2
13	and 3 list the specific benefits and costs, respectively, that should be quantified in

the Commission's net metering methodology, along with comments on the

15 methodology for the quantification of each specific category.

14

hereafter "Maine VOS Study." Available at http://www.maine.gov/mpuc/electricity/elect_generation/documents/MainePUCVOS-ExecutiveSummary.pdf.

- 21 -

 ¹³ Interstate Renewable Energy Council and Rabago Energy, A REGULATOR'S GUIDEBOOK: Calculating the Benefits and Costs of Distributed Solar Generation (October 2013) and Synapse Energy Economics, Benefit-Cost Analysis for Distributed Energy Resources: A Framework for Accounting for All Relevant Costs and Benefits (prepared for the Advanced Energy Economy Institute, September 2014).
 ¹⁴ Maine Public Utilities Commission, Maine Distributed Solar Valuation Study (March 1, 2015),

NEM Benefit Category	Description	Comments on Methodology
Avoided Energy	Change in the variable costs of the marginal system resource, including fuel use and variable O&M, associated with the adoption of DG.	Typically calculated from market energy prices (in deregulated markets), from production cost analyses (for regulated monopoly utilities), or from the energy costs of the proxy marginal resource. Calculation should be granular enough to calculate avoided energy costs of DG resources accurately. These energy costs should be adjusted for the appropriate energy losses (see below).
Avoided Generating Capacity	Change in the fixed costs of building and maintaining new conventional generation resources associated with the adoption of DG.	Forecast of marginal generation capacity costs calculated from market capacity prices (in deregulated markets), from the cost of the least expensive new capacity resource – typically a new combustion turbine peaker (for regulated monopoly utilities), or from the capacity cost of the proxy marginal resource. These capacity costs should be based on public, transparent data, should be adjusted for the appropriate losses (see below) and the applicable capacity reserve margin, and should reflect the capacity contribution of each type of renewable DG resource.
Avoided Line Losses	Change in electricity losses from the points of generation to the points of delivery associated with the adoption of DG.	Applies to both energy and generating capacity. Should be based on marginal line loss data and DG generation profiles.
Avoided Ancillary Services	Change in the costs of services like operating reserves, voltage control, and frequency regulation needed for grid stability associated with the adoption of DG.	These costs can be avoided if such reserves are procured based on loads that DG will reduce. Future DG technologies like "smart inverters" may provide services such as voltage support.
Avoided T&D Capacity	Change in costs associated with expanding/replacing/upgrading T&D capacity associated with the adoption of DG.	Based on marginal capacity costs to expand/replace/upgrade capacity on a utility's T&D system. Contribution of a DG resource to avoiding transmission or distribution capacity will depend on the contribution of DG to reducing peak loads on the transmission or distribution systems. This analysis will become more complex as one moves to lower voltages on the distribution system, where distribution substations and feeders will peak at different times.
Avoided Environmental Costs	Change in costs associated with mitigation of SO_x , NO_x , and PM-2.5 emissions or with waste disposal costs (e.g. coal ash) due to the change in production from each IOU's marginal generating resources as a result of the adoption of DG generation.	Can be included in the Avoided Energy component.
Avoided Carbon Emissions	Change in costs to mitigate CO_2 or equivalent emissions due to the change in production from each IOU's marginal generating resources associated with the adoption of DG.	Based on estimates of the value of carbon emission reductions from utility integrated resource plans (IRPs) or from regulatory agencies with jurisdiction over such emissions. Such reductions can have quantifiable value to ratepayers through avoiding direct

Table 2: Avoided Cost Benefits (for TRC, Societal, and RIM Tests)

1

- 22 -

ervatioux on these specific c	emission costs (as in cap & trade markets) or through the costs of resource choices intended to reduce carbon emissions (such as the replacement of coal with natural gas.
Costs to lock in the future price of fuel to match the fixed-price attribute of renewable DG.	Can be approximated through the use of forward natural gas prices to forecast future avoided energy costs, plus the costs avoided by not having to engage in such hedging.
Reduction in energy and capacity wholesale market prices as a result of lower demand resulting from DG adoption.	This benefit of lower market prices as a result of new demand-side resources has been quantified in New England as demand reduction-induced price elasticity (DRIPE).
Reduction in above-market generation costs associated with the utility's acquisition of renewable resources, if DG will contribute to meeting the utility's renewable procurement goals.	This benefit will apply to the extent that renewable DG meets a state goal that otherwise would be met with utility- owned or contracted resources.
Benefits for citizens of the utility's service territory or state that are not reflected directly in customer's energy costs.	 Lower environmental costs from Damages due to climate change Consumption or withdrawal of scarce water resources Land use impacts Health benefits from Lower criteria air emissions Economic benefits from Fewer power outages
	Costs to lock in the future price of fuel to match the fixed-price attribute of renewable DG. Reduction in energy and capacity wholesale market prices as a result of lower demand resulting from DG adoption. Reduction in above-market generation costs associated with the utility's acquisition of renewable resources, if DG will contribute to meeting the utility's renewable procurement goals. Benefits for citizens of the utility's service territory or state that are not reflected directly in customer's energy costs.

1 2

Table 3: Costs of DG Programs (for TRC and RIM Tests)

NEM Cost Category	Description	Comments on Methodology
For TRC Test	e essuaption that there inpende	product product to a Mart
DG Resource	Capital and O&M costs of the DG resource.	intended fordevelop und musi
Integration	Increased costs for regulation and operating reserves to integrate variable renewable DG resources.	Integration costs should be those attributable to DG that are incremental to the costs to meet load variability.
Administrative / Interconnection	Utility costs to administer the NEM/DG program, as well as utility costs to interconnect DG resources that are not paid by the DG customer.	Should include the incremental costs associated with net metering above those required for regular billing, as well as other administrative costs. Interconnection costs should not include such costs if they are paid by the DG customer itself.
For RIM Test	tion a zero value to thit categor	the defigit should not be to as
Lost Revenues	Bill credits provided to NEM customers for exported energy.	Will vary depending on the tariff under which the DG customer takes service.
Integration	Same as above	plants and r sequences if their or
Administrative/ Interconnection	Same as above	<u>ร</u> ระษณณะ แล้ง เหล่าสะเร sool

1	Q28:	Do you have any general observations on these specific categories of benefits
2		and costs?
3	A28:	Yes. First, all of the above categories of benefits and costs are quantifiable, and
4		have been quantified in other NEM or DG benefit/cost studies.
5		
6		Second, the quantification of these benefits may require data and/or calculations
7		that the utilities may not produce today in the normal course of business. For
8		example, not all utilities calculate marginal line losses or marginal T&D capacity
9		costs (although some do), and there are well-accepted techniques to perform these
10		calculations.
11		
12		Third, to the extent that studies of relatively complex issues – such as solar or
13		wind integration costs – have yet to be performed, reasonable values for these
14		costs can be derived from such studies performed for other utilities.
15		
16		Fourth, some states (including New Hampshire) still offer modest state incentives
17		for new solar DG. We have not included these incentives as a ratepayer cost of
18		NEM in our analysis, under the assumption that these incentives have been
19		intended to develop and transform the solar market in New Hampshire, and will
20		phase out over time as solar costs decline and the market matures. These
21		incentives also can be justified by the significantly greater societal benefits of this
22		clean energy development.
23		
24		Finally, if there is uncertainty about the magnitude of a specific benefit or cost,
25		the default should not be to assign a zero value to that category. For example, the
26		EPA's proposed regulations of greenhouse gas (GHG) emissions from power
27		plants under Section 111(d) of the Clean Air Act indicate that the federal
28		government may regulate such emissions based on the administration's social cost
29		of carbon (SCC) values. The EPA's actions increase the certainty that the
30		utilities will incur significant future costs for reducing carbon emissions.

- 24 -

1 Accordingly, a reasonable assumption for future carbon costs is not zero, but 2 should consider a range of possible future mitigation costs. 3 4 Q29: Two of the New Hampshire utilities – Liberty and Unitil – are distribution 5 companies without their own generation or bulk transmission assets. Should 6 the Commission limit the assessment of the benefits and costs of NEM for 7 these smaller utilities only to the delivery services which they provide? 8 A29: No. These utilities do not provide only distribution services; they also offer 9 default energy service that provides generation and they bill customers for the 10 regional transmission required to supply their service territories and to provide 11 market access. They are required to offer their customers a fully bundled retail 12 product which includes both delivery services and generation at the default energy 13 service rate. Customers who install net metered DG are providing an alternative 14 to retail electric service that includes both generation and the delivery of the 15 power directly to load. Accordingly, the benefits and costs of NEM should 16 include all of the components of this service - generation, transmission, and 17 distribution. When a customer installs DG, the serving distribution utility avoids 18 the need to purchase generation in the market and reduces its use of the regional 19 transmission grid to import power, as well as potentially avoiding its own costs 20 for local delivery of the power that the DG customer is now supplying. In the 21 transparent, deregulated wholesale market in New England, the avoided costs for 22 generation and bulk transmission can be readily estimated, even though the 23 distribution company does not own or control any of the upstream assets.

Crossborder Energy

- 25 -

1	V.	NEW BENEFIT-COST STUDIES FOR THE NEW HAMPSHIRE UTILITIES
2		
3	Q30:	Have you performed new benefit-cost studies of solar DG for the New
4		Hampshire utilities?
5	A30:	Yes, I have. Appendix D to this testimony includes a new study reporting the
6		results of applying the full set of SPM cost-effectiveness tests to solar DG on the
7		Eversource, Liberty, and Unitil systems. These benefit-cost analyses follow the
8		general approach discussed above, including the use of multiple perspectives, a
9		comprehensive list of benefits and costs, and a long-term analysis that focuses on
10		generation exports.
11		
12	Q31:	Please summarize the results of these studies.
13	A31:	The following three Tables 4, 5, and 6 present the results of the benefit and cost
14		analyses and the resulting SPM tests for the residential, commercial, and
15		combined residential and commercial markets of the three utilities. The results
16		are also illustrated in Figures ES-2 and ES-3 for Eversource. Appendix D
17		provides a full discussion of the calculations of the benefits and costs that were
18		used for these tests. In evaluating these results, it is important to acknowledge
19		that there is uncertainty in these benefit and cost estimates, and thus, as with any
20		such set of cost-effectiveness tests, a reviewer should not place undue weight on
21		whether the score on a particular test is a few percent above or below 1.0.
22		Instead, the goal should be to have SPM scores on all of the tests that are in a
23		similar range close to 1.0 (or higher), which indicates that NEM has achieved a
24		reasonable, equitable balance of benefits and costs for all concerned – solar
25		customers, other ratepayers, and the utility system as a whole.

Crossborder Energy

Cost or SDM Tost	or SPM Test Utilities		
Cost or SPM Test	Eversource	Liberty	Unitil
Residential	53%	74%	73%
Costs (25-year levelized cents/kWh)		Jeichard annal	Lotte La Late J
A1. Direct Avoided Cost Benefits	20.6	20.0	19.6
A2. Societal Avoided Cost Benefits	9.8	9.8	9.7
B. LCOE of Solar for Participants	17.6	18.3	16.3
C. Bill Savings / Lost Revenues	20.1	19.2	19.5
SPM Test Results		alle alle	68 M21 1998
$TRC - A1 \div B$	1.17	1.09	1.20
Societal – $A2 \div B$	1.73	1.63	1.80
Participant – $C \div B$	1.14	1.05	1.19
$RIM - A1 \div C$	1.03	1.04	1.01

1 Table 4: SPM Test Results: Residential

2 3

Table 5: SPM Test Results: Commercial

Cost or SDM Tost	Utilities		
Cost of SPMI Test	Eversource	Liberty	Unitil
Commercial	47%	26%	27%
Costs (25-year levelized cents/kWh)			
A1. Avoided Cost Benefits	20.6	20.0	19.6
A2. Societal Avoided Cost Benefits	9.8	9.8	9.7
B. LCOE of Solar for Participants	14.6	14.9	14.0
C. Bill Savings / Lost Revenues	15.1	14.0	15.7
SPM Test Results		and the men second	
$TRC - A1 \div B$	1.41	1.34	1.40
Societal – A2 ÷ B	2.08	2.00	2.09
Participant – $C \div B$	1.03	0.94	1.12
$RIM - A1 \div C$	1.37	1.42	1.25

The trend lits of DG significantly a seed the costs in the commercial market Encouraging grawin in this market would help to encure that DG testimetrals a what provide not benefits in the utilities do a villate fournating of reducing an rate distant burface over a data and a types would be may be to assis the commercial solar market in New Frantishing.

Cost on SDM Test	Utilities		
Cost of SPM Test	Eversource	Liberty	Unitil
Residential & Commercial	100%	100%	100%
Costs (25-year levelized cents/kWh)		hands the first	Conta (22) Altro
A1. Avoided Cost Benefits	20.6	20.0	19.6
A2. Societal Avoided Cost Benefits	9.8	9.8	9.7
B. LCOE of Solar for Participants	16.2	17.4	15.7
C. Bill Savings / Lost Revenues	17.7	17.9	18.4
SPM Test Results		in alla	
$TRC - A1 \div B$	1.27	1.15	1.25
Societal – A2 \div B	1.88	1.71	1.87
Participant – $C \div B$	1.10	1.03	1.17
$RIM - A1 \div C$	1.16	1.12	1.06

Table 6: SPM Test Results: Residential and Commercial

0
2
_
2
Э.

Q32: What are key conclusions that you draw from these results?

A32: The principal conclusions of our analysis are as follows:

1. Solar DG is a cost-effective resource in New Hampshire, as the benefits equal or exceed the costs in the Total Resource Cost and Societal Tests.

2. There is a **balance between the costs and benefits of residential DG** for both participants and non-participants, as shown by the results close to or above a benefit-cost ratio of 1.0 for the Participant and RIM tests.

3. Significant rate design changes for residential DG customers, such as requiring solar DG customers to take service under rates with demand charges that would be difficult for solar customers to avoid, would upset this balance. As an example of this from the commercial market, the low Participant test score for Liberty's commercial market is due to the demand charge in the G-1 commercial rate.

4. The benefits of DG significantly exceed the costs in the commercial market.
 Encouraging growth in this market would help to ensure that DG resources as a
 whole provide net benefits to the utilities as a whole. Removing or reducing any
 rate design barriers such as demand charges would be one way to assist the
 commercial solar market in New Hampshire.

- 28 -

1	VI.	APPLICATION OF THE BENEFIT-COST METHODOLOGY TO SET RATES
2		
3		A. Net Metering Benefit – Cost Analyses and Rate Design
5	Q33:	How should the analysis which you have outlined above be used to determine
6		the rates and charges which will apply to NEM customers?
7	A33:	Any significant new charge or major change in rate design applicable to net-
8		metered customers should be tested to ensure that, after it is applied, DG will
9		remain a viable economic proposition for participating ratepayers, the utility
10		system, and the state as a whole, while not imposing undue upward pressure on
11		the rates of non-participants. Such a balancing test should use a long-term
12		benefit-cost analysis from multiple perspectives, because DG is an important
13		long-term resource whose economics should be assessed over its full economic
14		life, in the same way that other resource options are assessed.
15		
16	Q34:	Are there important lessons from other states in terms of how the results of a
17		cost-benefit analysis of NEM may differ among different types and classes of
18		customers?
19	A34:	Yes. The impacts of net metering on non-participating ratepayers will vary
20		significantly across customer classes. For example, the costs of NEM are
21		typically lower for commercial and industrial (C&I) classes than for residential
22		customers, for several reasons. First, C&I rates tend to be lower than residential
23		rates. Second, the solar DG systems of C&I customers export less power to the
24		grid than residential systems, because the diurnal load profile of C&I customers
25		often is a better match for the profile of solar output and because the DG systems
26		installed by C&I customers typically are smaller relative to the size of the on-site
27		load. Finally, rate design has a major impact on the bill savings that NEM
28		customers can realize, and thus on the lost revenues that are the major cost of
29		NEM for non-participating ratepayers. C&I rate designs often recover a portion
30		of the utility's costs through monthly customer and demand charges that are

- 29 -

Crossborder Energy
1		difficult for C&I customers to avoid. Cost studies adopted by the California PUC
2		have demonstrated that demand charge structures overcharge solar customers
3		relative to the costs that they impose on the system, and undervalue the peaking
4		capacity that solar DG provides. As a result, SCE and other California utilities
5		have designed rate options with reduced demand charges but correspondingly
6		higher volumetric time-of-use rates, and they make those rate options available to
7		C&I customers who install solar. ¹⁵
8		
9		B. Demand Charges Are Problematic for Small DG Customers
10		
11	Q35:	Are rate designs with demand charges appropriate for residential and small
12		commercial customers who install DG?
13	A35:	No, for several reasons.
14		
15		First, demand charge-based rates are not cost-based for customers who install
16		solar. Customers who install solar DG systems serve a significant portion of their
17		load with their own on-site generation. This reduces the utility's costs to serve
18		the DG customers and provides new renewable capacity to the grid. However, if
19		a significant portion of the utility's costs are collected through a demand charge,
20		the DG customers may see little reduction in their bills for the costs covered by
21		the demand charge. This relatively small change in their bills may fail to
22		compensate them for the capacity-related costs that their on-site generation
23		avoids. For example, a cloudy, low-demand day with low PV output may be the
24		day that causes solar customers to incur a significant demand charge for the entire
25		month. However, the resulting monthly bill will fail to recognize that the same
26		customer contributed significant peaking capacity on the hot, sunny, high demand

- 30 -

¹⁵ See California PUC Decision No. 14-12-080, adopting Option R rates for PG&E after a fully-litigated proceeding; Decision No. 13-03-031 (March 21, 2013), at p. 31, discussing Option R rates for Medium and Large Power customers; and CPUC Decision No. 09-08-028 (August 20, 2009), at p. 22, first implementing Option R rates for SCE's Medium and Large Power customers who install solar.

1	days of that same month, and thus the utility avoided significant capacity-related
2	costs which are not recognized in the solar customer's bills.
3	
4	Second, demand charges present serious problems with customer acceptance, as
5	shown by several market research studies on small customers' rate design
6	preferences:
7	
8	• In 2013 the three major investor-owned electric utilities in California
9	commissioned a customer survey as part of the CPUC's comprehensive
10	rulemaking proceeding on residential rate design. ¹⁶ This study concluded
11	that a demand charge "was confusing" to participants, who ended up
12	making inaccurate comparisons to a fixed monthly service fee because
13	they failed to comprehend that a demand charge "varies based on kW
14	demand levels." ¹⁷
15	
16	• In 2015, San Diego Gas & Electric (SDG&E) conducted a survey of
17	customer preferences for a new net metering (NEM 2.0) tariff in
18	California. This survey only looked at possible new structures for the
19	NEM 2.0 tariff, and did not include a continuation of the existing NEM
20	1.0 tariff based on a retail rate credit using the existing volumetric rate
21	structure. The possible new NEM 2.0 structures that SDG&E tested
22	included (1) a feed-in tariff with a set price for all DG output, (2) a
23	demand charge, and (3) an installed capacity charge based on the installed
24	kW of DG capacity. Significantly, the simplest structure, the feed-in
25	tariff, although not as simple as the existing NEM 1.0, was favored over
26	demand charges or installed capacity charges by wide margins – by 4-to-1
27	over a demand charge and by 5-to-1 over an installed capacity charge.
28	The survey concluded that, for customers, the key drawbacks of the

¹⁶ CPUC Docket R. 12-06-013.

¹⁷ Hiner & Partners, Inc. "*RROIR*" Customer Survey, at 22 (April 16, 2013).

1	demand charge are that it is "confusing," "unpredictable (may pay more),"
2	and "can be difficult to change behavior" to reduce your maximum 15-
3	minute demand. ¹⁸ One of the respondents to the SDG&E survey
4	summarized the problematic behavioral economics associated with
5	extending demand charges to residential customers:
6 7 8 9 10	I don't like anything about it. I will constantly have to monitor how many electric appliances are being used at each time, and will have to become the "electricity police" in my household and make sure that each family member is complying. ¹⁹
12	In January 2016, the CPUC found that the utility proposals to levy demand
13	charges or installed capacity fees on DG customers would face difficulties
14	with customer acceptance, were not cost-based, and would be contrary to
15	the CPUC's rate design goals that focus on implementing time-of-use
16	("TOU") rates. ²⁰
17	
18	• Public Service of Colorado (PSCo) recently conducted a focus group to
19	gauge customers' responses to new residential rate designs, including one
20	with a demand charge that would apply only during the on-peak TOU
21	period. The customers' response indicated that the combination of a
22	demand charge and a specific time-of-use period in which it applies is
23	potentially confusing to customers and challenging for customers to
24	manage. ²¹
25	
26	Q36: Are there other practical issues with rate designs featuring demand charges?
27	A36: Yes. Demand charges substantially complicate customers' and vendors' ability to
28	analyze and project the bill savings from demand-side programs, including energy

¹⁸ Hiner & Partners, Final Report: Solar (NEM) Rate Preferences Survey Results, at Slide 8 (June 2015). 19 Id., at Slide 24.

²⁰ See CPUC Decision No. 16-01-044, at 76-79,

http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M158/K285/158285436.pdf. ²¹ Colorado PUC Docket No. 16AL-0048E, Testimony of PSCo witness Alice K. Jackson, Exhibit AKJ-1, at p. 25 of 30.

1		efficiency, demand response, and DG. For example, demand data for typical
2		home energy uses and appliances is not readily available. Furthermore,
3		understanding and accepting demand charges will require customers to become
4		familiar with data on their 15-minute demands. Obviously, this data will not even
5		become available to customers until an advanced metering infrastructure is
6		installed. Even then, customers will have to analyze and understand much more
7		data on their energy use to appreciate when their demand peaks and what the
8		hourly profile of their usage is.
9		
10		In New Hampshire, it is my understanding that only Unitil has an advanced
11		metering infrastructure for residential and small commercial customers that is
12		capable of recording 15-minute demand. Further, Unitil does not make this more
13		granular data available to its customers online. To my knowledge, none of the
14		utilities have undertaken customer education or market research around demand-
15		based rates for small customers. This lack of the necessary metering, readily-
16		available 15-minute data, or the outreach and education required for customers to
17		understand, accept, and take actions based on their kW demand appears to me to
18		preclude consideration of demand charge-based rate structures until these
19		necessary predicates are in place.
20		
21		C. Separate Rate Classes for DG Customers
22		
23	Q37:	Should customer-generators be placed into their own rate classes?
24	A37:	No, a separate customer class should not be created simply as a function of
25		installing DG. Customer-generators should not be placed into a separate class
26		without sufficient data to justify distinct treatment from the customer class in
27		which a customer took service before installing DG. It cannot be assumed that,
28		after installing DG, customers will become significantly different than other
29		customers in the class. For example, data from many states show that adding
30		solar tends to change a larger-than-average residential customer into a smaller-

- 33 -

Crossborder Energy

than-average one, but both pre-and post-solar customers are well within the range of sizes typical of the residential class.²² As one example, the following chart shows the average monthly load factors for residential customers on the El Paso Electric ("EPE") system, including customers with solar DG as well as standard customers both with evaporative cooling and with air conditioning.²³ As **Figure 2** shows, the load factors of solar customers are similar to those of customers with evaporative cooling, and well within the range for the residential class as a whole. In a recent settlement of its general rate case, EPE withdrew its proposal to create a separate class for DG customers.²⁴

10

1

2

3 4

5

6 7

8

9

In 2014, the Utah Public Service Commission reached a similar conclusion in rejecting a proposal from Rocky Mountain Power to impose a net metering facilities charge. In Utah, the typical residential customer uses 500-600 kWh per month, with net metered customers falling at the low end of this range at 518 kWh per month. The Utah commission concluded that "[t]hese facts undermine PacifiCorp's reasoning that net metered customers shift distribution costs to other residential customers in a fashion that warrants distinct rate treatment." See Utah PSC, Order issued August 29, 2014 in Docket No. 13-035-184, at p. 62. ²³ Texas Public Utilities Commission Docket No. 44941, EPE response to Solar Energy Industries Association Data Requests (DR) 1-13 and 1-24.

²⁴ See Texas PUC Order dated August 25, 2016 in Docket No. 44941.

- 34 -

²² In 2014, the Colorado PUC held workshops on net metering issues. Data from those workshops showed that the typical residential customer in Colorado who installs solar tends to have greater usage than an average customer, with an average monthly pre-solar bill of \$126 compared to the average residential bill of \$77 per month. After adding solar, the typical solar customer's bill drops to \$50 per month. This information is based on data from solar customers on the Public Service of Colorado system. See "On-Site Solar Industry Answer to Questions set forth in Attachment A of Commission Decision No. C14-0776-I," filed July 21, 2014 in Colorado PUC Docket No. 14M-0235E, at pp. 8-9.

1	Q38:	What are the implications under PURPA of creating separate classes for DG
2		customers?
3	A38:	As noted above, the FERC rules implementing PURPA create a safe harbor
4		against claims of discrimination if DG/QF customers pay the same rates as similar
5		non-DG customers. Creating a separate DG/QF customer class with rates that are
6		different than those applicable to other similar customers moves out of this safe
7		harbor. For example, if a utility does not require other types of QFs (such as
8		combined heat & power facilities) to take service under a distinct customer class
9		to which costs are allocated separately from similar customers who are not QFs,
10		then a separate customer class for residential consumers who install DG would be
11		inconsistent with the treatment of other partial requirements customers who are
12		QFs, and thus would violate this FERC rule.
13		
14		D. Rate Design Changes to Adjust the NEM Benefit-Cost Balance
15		
16	Q39:	If the Commission's analysis finds that there is a cost shift from customer-
17		generators to non-participating ratepayers that is large enough to require
18		mitigation, what are the recommended rate design approaches to remedying
19		this problem?
20	A39:	There are several. Impacts on non-participants are most likely to be a concern in
21		the residential market, because residential solar systems export a higher
22		percentage of their output and because most of the residential cost of service is
23		recovered through volumetric rates. The preferred rate design solutions are the
24		following:
25		
26 27 28		• Encourage increased adoption of time-of-use rates that align rates more closely to the changes in the utility's costs over the course of a day. ²⁵

²⁵ This can include on-peak volumetric rates that recover capacity-related costs. Residential TOU rates should be kept simple and promoted through outreach and education programs, to ensure customer acceptance. Residential demand charges should be avoided due to their complexity, lack of time sensitivity, and unfamiliarity for residential customers. California has mandated that, once the state's 5% NEM cap is reached, succeeding NEM customers must elect a TOU rates.

1 2 3	• Adopt a monthly minimum bill to recover customer-related costs, thus ensuring that all customers make a minimum contribution to the costs of the utility infrastructure that serves them
1	the utility inflastitucture that serves them.
4	Provide a rest of the state where under a manual contract of the properties of the section of th
5	 Remove public benefit charges and the electricity consumption tax
6	from the NEM export rate, so that all customers contribute to these public
7	purpose programs on the equitable basis of the power they take from the
8	utility system. ²⁶
9	
10	Q40: Why are these rate design changes the preferable way to address balance of
11	benefits and costs in NEM?
12	A40: These solutions are preferable for the following reasons:
13	• Address the central equity issue. Minimum bills, for example, ensure
14	that all customers make a minimum contribution to the utility
15	infrastructure that serves them. The minimum bill can be set to cover the
16	utility's customer-related costs (for metering billing and customer
17	account services) which clearly do not vary with the use of either energy
18	or capacity. In this way, they address directly the issue of equity between
10	of capacity. In this way, they address directly the issue of equily between
19	participating and non-participating ratepayers by ensuring that all
20	customers contribute equally to cover such costs. Similarly, it is equitable
21	for all customers to contribute to public purpose programs in the same
22	way, based on amount of service which they take from the utility system.
23	recorded to have a trifting the release or that it force cannot to consider the
24	• Consistent with cost causation. TOU rates align rates more closely with
25	the utility's underlying costs than do flat rates or rates tiered by usage. A
26	minimum bill can be set to assure recovery from all customers of
27	customer-related costs which do not vary with usage. Thus, both TOU
28	rates and minimum hills are consistent with cost causation principles
29	rates and minimum onto are consistent whit cost causation principles.
20	• Encourages sustamor choice. Recourse a minimum hill only imposes a
21	• Encourages customer choice. Decause a minimum oni only imposes a
31	floor on the customer's bill and does not apply if usage remains above the
32	minimum bill level, it provides the greatest scope for customers to impact
33	their energy bills by exercising their choice to participate in self-
34	generation, energy efficiency, or demand response. Similarly, TOU rates
35	send more accurate price signals to customers concerning both the value
36	of their DG output and when it is best to either consume or conserve
37	energy.
38	
39	• Customer acceptance. California which has the nation's largest
40	distributed solar market has adopted a \$10 per month residential
11	minimum hill for the large electric utilities in that state and the minimum
41	minimum off for the large electric utilities in that state, and the minimum

- 36 -

²⁶ California and Nevada have implemented this modification to NEM export rates.

	bill was recently increased in Hawaii, where solar penetration is far higher than any other state. In contrast, attempts to implement monthly fixed charges on solar customers have not been well-received in other states, and have been perceived as efforts to tax solar production such that it would no longer be economic. ²⁷ In essence, minimum bills are perceived as a fair balance between allowing customer choice and ensuring that all customers make an equitable contribution to the costs of utility infrastructure. Significantly, although California and Nevada recently issued very different decisions on net metering, both commissions rejected proposals to apply demand charges to residential solar customers due to concerns with customer acceptance. ²⁸
•	Non-discrimination. Many states, including New Hampshire, have statutory prohibitions against undue discrimination in the design of utility rates. ²⁹ If fixed charges are raised for all residential customers, there can be adverse bill impacts on all low-usage customers, including low-income ratepayers. A minimum bill is more likely to avoid such problems, as it

will apply to a relatively small number of non-DG customers.

• Avoid competitive bypass. A minimum bill can address impacts on nonparticipants by providing DG vendors with a signal to reduce the sizing of DG systems to keep customers above the minimum bill level, thus reducing the costs of net metering for other ratepayers. This still allows scope for customer choice of DG for usage above the minimum bill level. In contrast, if a fixed charge on residential DG is set too high, as DG and on-site storage technologies continue to develop and as their costs continue to fall, the response of consumers ultimately may be to "cut the cord" completely from utility service, as has happened with landline telephone service in many areas. In my opinion, such a result would be unfortunate, because the utility grid would lose important benefits that DG and on-site storage could provide for all ratepayers.

For example, Idaho PUC, Final Order No. 32846 in Case No. IPC-E-12-27 (July 3, 2013), at pp. 3-5.
 See PUCN December 23, 2015 Order in Dockets Nos. 15-07-041 and 15-07-042, at p. 91, also CPUC

Decision 16-01-044, at pp. 75 and 79. ²⁹ N.H. Rev. Stat. Ann. § 362-A:9.I.

1 2	E. Policy Reasons to Encourage Renewable DG
3	Q41: Are there any other important policy reasons why a state should maintain a
4	supportive environment for customer-sited, distributed renewable
5	generation?
6	A41: Yes. Rooftop solar and other renewable distributed energy technologies
7	allow customers to take greater responsibility for their supply of
8	electricity, compared to traditional service from the monopoly utility.
9	There are many benefits to a technology that allows customers greater
10	choice in how they obtain their electricity. These include:
11	
12 13 14 15 16 17	• New Capital. Customer-owned or customer-sited generation brings new sources of capital for clean energy infrastructure. Given the magnitude and urgency of the task of moving to clean sources of energy, expanding the pool of capital devoted to this task is essential.
17 18 19 20 21 22 23 24 25 26 27	• New Competition. Rooftop solar provides a competitive alternative to the utility's delivered retail power. This competition can spur the utility to cut costs and to innovate in its product offerings. With the widespread availability in the near future of customer-sited storage paired with rooftop solar, energy efficient appliances, and load management technologies, this competition will only intensify, given that the combination of solar and storage in the future may offer an electric supply whose quality and reliability approaches utility service.
28 29 30 31 32 33 34 35 36 37	• Grid Services. With deployment of smart inverters in the future, rooftop solar systems can provide voltage services, reactive power and other grid services. In addition, by reducing load on individual circuits, rooftop solar systems reduce thermal stress on distribution equipment, thereby extending its useful life and deferring the need to replace it. All of these additional values are difficult to quantify because there are not currently markets for these services, and utilities do not have an incentive to procure these types of services from third-party providers.
38 39 40	• Enhanced Reliability and Resiliency. Renewable distributed generation resources are installed as thousands of small, widely distributed systems and thus are highly unlikely to fail at the same

- 38 -

time. Furthermore, the impact of any individual outage at a DG unit will be far less consequential, and less expensive for ratepayers, than an outage at a major central station power plant. Solar DG is located at the point of end use, and thus also reduces the risk of outages due to high loads on the transmission or distribution systems. Most electric system interruptions result from weather-related transmission and distribution system outages. In these events, renewable DG paired with on-site storage can provide customers with an assured back-up supply of electricity for critical applications should the grid suffer an outage of any kind. This benefit of enhanced reliability and resiliency has broad societal benefits as a result of the increased ability to maintain government, institutional, and economic functions related to safety and human welfare during grid outages.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20

21

22

23

24

25

26

27

28 29

30

31

32

33

34

35

36 37

38

39

40

41

42

43 44

45

• **High-tech Synergies.** Rooftop solar appeals to those who embrace the latest in technology. Solar has been described as the "gateway drug" to a host of other energy-saving and clean energy technologies. Studies have shown that solar customers adopt more energy efficiency measures than other utility customers, which is logical given that it makes the most economic sense to add solar only after making other lower-cost efficiency improvements to your premises. Further, with net metering, customers retain the same incentives to save energy that they had before installing solar. These synergies will only grow as the need to make deep cuts in carbon pollution drives the increasing electrification of other sectors of the economy, such as transportation.

Customer Engagement. Customers who have gone through the process to make the long-term investment to install solar learn much about their energy use, about utility rate structures, and about producing their own energy. Given their long-term investment, they will remain engaged going forward. There is a long-term benefit to the utility and to society from a more informed and engaged customer base, but only if these customers remain connected to the grid. As we have seen recently in Nevada, this positive customer engagement can turn to customer "enragement" if the utility and regulators do not accord the same respect and equitable treatment to customers' long-term investments in clean energy infrastructure that is provided to the utility's investments and contracts. Emerging storage and energy management technologies may allow customers in the future to "cut the cord" with their electric utility in the same way that consumers have moved away from the use of traditional infrastructure for landline telephones and cable TV. Given the important long-term benefits

- 39 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14		 that renewable DG can provide to the grid if customer-generators remain connected and engaged, it is critical for regulators and utilities to avoid alienating their most engaged and concerned customers. Self-reliance. The idea of becoming independent and self-reliant in the production of an essential commodity such as electricity, on your own property using your own capital, has deep appeal to Americans, with roots in the Jeffersonian ideal of the citizen (solar) farmer. The benefits of choice listed above are difficult to express in dollar terms; however, all are strong policy reasons for ensuring that the development of clean energy infrastructure includes policies which sustain a robust market
15		for rooftop solar.
16		
17		
18	VII.	ADDITIONAL PROGRAM DESIGN CONSIDERATIONS
19		
20	Q42:	Are there any additional issues that are important to address in considering
21		the program design of a new, alternative net metering tariff?
22	A42:	Yes. HB 1116 requires the Commission to consider "whether there should be a
23		limitation on the amount of generating capacity eligible for such tariffs" and
24		whether to change the "size limits" of facilities eligible for net metering. ³⁰
25		Additionally, the law requires the Commission to consider whether to adopt a
26		regulatory mechanism to allow utilities to receive timely cost recovery associated
27		with net metering.
28		
29	Q43:	When should any new net metering tariff apply?
30	A43:	HB 1116 provides some additional headroom for the net metering program, i.e.,
31		an additional 50 MW that is allocated among the distribution utilities. Any new,
32		alternative net metering tariff adopted in this proceeding should only apply to
33		customers of a specific utility after the utility reaches the expanded capacity limit

³⁰ RSA 362-A:9, XVI.

- 40 -

1	set by HB 1116. Once a utility certifies that they have reached the expanded net
2	metering cap, the alternative net metering tariff design approved in this
3	proceeding should be made available to new net metering customers. Customers
4	that take service on the existing, original net metering tariff should be allowed to
5	remain on their standard tariff until December 31, 2040, the date specified in HB
6	1116. In other words, existing NEM customers and future NEM customers who
7	take service before the expanded HB 1116 capacity limit is reached should be
8	grandfathered under the current NEM tariff until December 31, 2040.
9	
10	Q44: Should any alternative net metering tariff adopted by the Commission have
11	an overall limit on the amount of capacity eligible for the new alternative net
12	metering tariff?
13	A44: No. There are several reasons why a participation cap is not warranted. First, the
14	goal of a successor tariff to the legacy net metering program should be to create a
15	sustainable mechanism. The Commission and stakeholders – including utilities,
16	consumer advocates, environmental groups, and solar developers - should seek to
17	avoid the disrupting fits and starts that can result from arbitrary program limits.
18	Beyond technical limitations that may arise due to higher penetration at some time
19	in the future, there is no good rationale to limit arbitrarily the potential size of the
20	net metering market in New Hampshire. ³¹
21	quatangers by take service undar any alternative net metering taruff.
22	Second, the Commission's consideration of whether any limit is appropriate must
23	also be informed by the costs and benefits of the program. As presented in the
24	benefit-cost analysis which accompanies this testimony, net metering in its
25	current form creates net benefits for New Hampshire ratepayers. Any
26	modifications to the current mechanism (e.g., minimum bills, time-of-use rates,
27	removal of public benefits charges and consumption taxes from the net metering

- 41 -

Crossborder Energy

³¹ Hawaii is the only U.S. solar market that has experienced significant technical issues due to high penetration of DG solar. These issues surfaced when DG solar penetration exceeded about 15% of customers on the island grids in Hawaii. The penetration of rooftop solar is far lower in New Hampshire today.

credit for exports) will only increase the net benefits flowing to other customers. Accordingly, a successor alternative net metering tariff that continues to be based on current volumetric retail rates will avoid unreasonable cost shifting and will result in just and reasonable rates for all ratepayers. There is no reason to limit a policy that provides such a demonstrable positive impact.

7 However, should circumstances change that throw into question the present 8 reasonable balance of the benefits and costs of net metering, any future review of 9 net metering tariffs and associated rate designs should occur within the context of 10 a utility's general rate case (GRC). As should be obvious from the record in this 11 case, an evaluation of the benefits and costs of net metering is a data-intensive 12 exercise that requires many of the same analyses (such as marginal cost studies 13 and cost allocation data used in rate design) that are typically available in data-14 rich GRCs. At that time, the Commission can again consider the benefits and 15 costs of NEM in determining just and reasonable rates for all customers, including 16 net metering customers. The structure of the net metering tariff itself, however, 17 should be durable and should not be arbitrarily limited to a specific level of 18 participation.

19

1

2

3

4

5

6

20	Q45:	Do you recommend any change to the maximum system size limit for
21		customers who take service under any alternative net metering tariff?
22	A45:	No. Assuming that the basic structure of net metering remains intact, the existing
23		1 MW system size limitation allows a broad range of customer types to install on-
24		site distributed generation to meet some or all of their electrical needs. This size
25		limit encourages the development of smaller scale systems dispersed over a
26		service territory, which can provide diversity benefits when compared to a much
27		larger solar facility at a single point on the transmission grid. Moreover, the
28		distribution grid, in most instances, will be able to accommodate the
29		interconnection of projects in this range through expedited interconnection
30		procedures without the need for upgrades. For larger distributed generation

- 42 -

1	systems, pilot programs could be developed that target the specific needs of larger	r
2	customers that cannot utilize net metering to offset most or all of their onsite load	
3	due to the 1 MW system size limit.	
4		
5	Q46: In terms of cost recovery for net metering, are there any mechanisms	
6	currently in place?	
7	A46: New Hampshire law provides that a distribution utility may seek approval from	
8	the Commission for cost recovery of lost revenues from NEM, using a utility-	
9	specific methodology. ³² It is my understanding that a settlement agreement is	
10	currently before the Commission in Docket No. 15-147 that proposes a specific	
11	methodology for Unitil. I am not aware of any other utility that has sought relief	
12	through this provision or that has employed a different methodology than Unitil's	
13	proposal to calculate the effect of net metering on its default service and	
14	distribution revenues.	
15		
16	Q47: Do you support including a cost recovery mechanism for utilities as part of	
17	any new alternative net metering tariff?	
18	A47: Yes. There is merit in developing an automatic rate adjustment mechanism for	
19	the utilities to recover lost net revenues (lost revenues net of avoided short-run	
20	costs) from new DG on an ongoing basis, in the years prior to the utility's next	
21	GRC. As shown in Docket DE 15-147, the amount of recovery to be achieved, at	
22	this time, is quite de minimis, accounting for a very small fraction of annual	
23	revenue. Until solar penetration begins to grow more rapidly, it is plausible that	
24	the legal and administrative costs of pursuing cost recovery under Puc 903.02(o)	
25	will often exceed the amount sought for recovery. An automatic adjustment	
26	mechanism to account for lost net revenues would help to hold the utilities	
27	harmless in the short-term to DG development, without the administrative burden	
28	of annual cost recovery proceedings.	
29		

³² See New Hampshire Code Admin. Rules Puc 903.02(o).

- 43 -

Crossborder Energy

1	Q48:	Does the recovery of these short-term costs indicate that there is a cost shift
2		to other customers?
3	A48:	No. As discussed in the benefit-cost study summarized above and presented in
4		detail in Appendix D, non-participating customers will see net benefits over the
5		long run thanks to the investments which net metering customers are making in
6		local renewable resources. However, these long-term net benefits will not be
7		apparent when looking only at a short-term cost recovery mechanism. While I
8		support a cost recovery mechanism to cover short-term costs, it is critically
9		important to distinguish this mechanism from any assessment of long-term
10		benefits and costs. A cost recovery mechanism provides a way to hold the utility
11		harmless and to remove the utility's perverse incentive to discourage customers
12		from investing in local renewable energy systems that will provide long term
13		benefits and lower overall system costs for all customers.
14		
15		The recovery of short-term costs – in the name of making the utility whole
16		- should not obscure the longer term benefits that net metering systems can
17		provide in reducing customer demand at the local and system levels, thus
18		avoiding future infrastructure costs. Customer use of distributed generation
19		reduces demand from the grid and can defer capacity additions and upgrades that
20		the utility would have had to undertake but for the presence of customer-sited DG
21		on the grid. Many of the avoided infrastructure benefits may never be specifically
22		identified by utilities, because the utilities will never actually face the higher
23		demands that would occur absent the development of customer-sited DG.
24		Nonetheless, these long-term avoided costs represent real savings in infrastructure
25		capacity and costs. ³³ The counterfactual nature of many of these savings
26		increases the importance of using marginal cost studies to understand how a
	the second second	

- 44 -

Crossborder Energy

³³ Occasionally, a utility will recognize that changes in customer demand resulting from demand-side programs including DG have impacted its infrastructure investments. For example, Pacific Gas & Electric (PG&E) recently announced to the California Independent System Operator that it is cancelling 13 subtransmission projects in its service territory, which would have cost \$192 million, as a result of "a combination of energy efficiency and rooftop solar," according to PG&E. However, such recognition is more the exception than the rule. See "Cal-ISO Board Approves Annual Transmission Plan," *California Energy Markets* (No. 1379, April 1, 2016) at p. 10.

1		utility's long-term capacity costs are impacted by changes in demand. Similarly,
2		net metered generation will reduce market prices and provide fuel hedging
3		benefits that will inure to all customers, but that will never be directly observable
4		in the market.
5		
6	Q49:	Does this conclude your prepared direct testimony?

7 A49: Yes, it does.

Crossborder Energy

000052

NHFUC Docket N5, DE 16-576 Direct Testimuty of R. Thoneus Beach Edabit **RT**1-1

unity's long-term capacity costs are impacted by changes in demand. Similarly, det netword generation will reduce market prices and provide fuel hodging benefits that will inute to all customers, but that will never be directly observable in the market.

Dues this conclude your prepared direct matimum?
 Ves. it dues

Appendix A

Curriculum Vitae of R. Thomas Beach

Mr. Beach is principal consultant with the consulting firm Crossborder Energy. Crossborder Energy provides economic consulting services and strategic advice on market and regulatory issues concerning the natural gas and electric industries. The firm is based in Berkeley, California, and its practice focuses on the energy markets in California, the western U.S., Canada, and Mexico.

Since 1989, Mr. Beach has had an active consulting practice on policy, economic, and ratemaking issues concerning renewable energy development, the restructuring of the gas and electric industries, the addition of new natural gas pipeline and storage capacity, and a wide range of issues concerning independent power generation. From 1981 through 1989 he served at the California Public Utilities Commission, including five years as an advisor to three CPUC commissioners. While at the CPUC, he was a key advisor on the CPUC's restructuring of the natural gas industry in California, and worked extensively on the state's implementation of the Public Utilities Regulatory Policies Act of 1978.

AREAS OF EXPERTISE

- Renewable Energy Issues: extensive experience assisting clients with issues concerning Renewable Portfolio Standard programs, including program structure and rate impacts. He has also worked for the solar industry on rate design and net energy metering issues, on the creation of the California Solar Initiative, as well as on a wide range of solar issues in many other states.
- Restructuring the Natural Gas and Electric Industries: consulting and expert testimony on numerous issues involving the restructuring of the electric industry, including the 2000 -2001 Western energy crisis.
- Energy Markets: studies and consultation on the dynamics of natural gas and electric markets, including the impacts of new pipeline capacity on natural gas prices and of electric restructuring on wholesale electric prices.
- Qualifying Facility Issues: consulting with QF clients on a broad range of issues involving independent power facilities in the Western U.S. He is one of the leading experts in California on the calculation of avoided cost prices. Other QF issues on which he has worked include complex QF contract restructurings, standby rates, greenhouse gas emission regulations, and natural gas rates for cogenerators. Crossborder Energy's QF clients include the full range of QF technologies, both fossil-fueled and renewable.
- Pricing Policy in Regulated Industries: consulting and expert testimony on natural gas pipeline rates and on marginal cost-based rates for natural gas and electric utilities.

EDUCATION

Mr. Beach holds a B.A. in English and physics from Dartmouth College, and an M.E. in mechanical engineering from the University of California at Berkeley.

ACADEMIC HONORS

Graduated from Dartmouth with high honors in physics and honors in English. Chevron Fellowship, U.C. Berkeley, 1978-79

PROFESSIONAL ACCREDITATION

Registered professional engineer in the state of California.

EXPERT WITNESS TESTIMONY BEFORE THE CALIFORNIA PUBLIC UTILITIES COMMISSION

- 1. Prepared Direct Testimony on Behalf of Pacific Gas & Electric Company/Pacific Gas Transmission (I. 88-12-027 July 15, 1989)
 - Competitive and environmental benefits of new natural gas pipeline capacity to California.
- 2. a. Prepared Direct Testimony on Behalf of the Canadian Producer Group (A. 89-08-024 November 10, 1989)
 - b. Prepared Rebuttal Testimony on Behalf of the **Canadian Producer Group** (A. 89-08-024 November 30, 1989)
 - Natural gas procurement policy; gas cost forecasting.
- 3. Prepared Direct Testimony on Behalf of the Canadian Producer Group (R. 88-08-018 December 7, 1989)
 - Brokering of interstate pipeline capacity.
- 4. Prepared Direct Testimony on Behalf of the **Canadian Producer Group** (A. 90-08-029 November 1, 1990)
 - Natural gas procurement policy; gas cost forecasting; brokerage fees.
- 5. Prepared Direct Testimony on Behalf of the Alberta Petroleum Marketing Commission and the Canadian Producer Group (I. 86-06-005 — December 21, 1990)
 - Firm and interruptible rates for noncore natural gas users

Crossborder Energy

- 6. a. Prepared Direct Testimony on Behalf of the Alberta Petroleum Marketing Commission (R. 88-08-018 — January 25, 1991)
 - b. Prepared Responsive Testimony on Behalf of the Alberta Petroleum Marketing Commission (R. 88-08-018 — March 29, 1991)
 - Brokering of interstate pipeline capacity; intrastate transportation policies.
- 7. Prepared Direct Testimony on Behalf of the **Canadian Producer Group** (A. 90-08-029/Phase II April 17, 1991)
 - Natural gas brokerage and transport fees.
- Prepared Direct Testimony on Behalf of LUZ Partnership Management (A. 91-01-027 — July 15, 1991)
 - Natural gas parity rates for cogenerators and solar thermal power plants.
- 9. Prepared Joint Testimony of R. Thomas Beach and Dr. Robert B. Weisenmiller on Behalf of the California Cogeneration Council (I. 89-07-004 July 15, 1991)
 - Avoided cost pricing; use of published natural gas price indices to set avoided cost prices for qualifying facilities.
- 10. a. Prepared Direct Testimony on Behalf of the Indicated Expansion Shippers (A. 89-04-033 October 28, 1991)
 - b. Prepared Rebuttal Testimony on Behalf of the Indicated Expansion Shippers (A. 89-04-0033 November 26,1991)
 - Natural gas pipeline rate design; cost/benefit analysis of rolled-in rates.
- 11. Prepared Direct Testimony on Behalf of the Independent Petroleum Association of Canada (A. 91-04-003 January 17, 1992)
 - Natural gas procurement policy; prudence of past gas purchases.
- 12. a. Prepared Direct Testimony on Behalf of the California Cogeneration Council (I.86-06-005/Phase II — June 18, 1992)
 - b. Prepared Rebuttal Testimony on Behalf of the California Cogeneration Council (I. 86-06-005/Phase II — July 2, 1992)
 - Long-Run Marginal Cost (LRMC) rate design for natural gas utilities.
- 13. Prepared Direct Testimony on Behalf of the California Cogeneration Council (A. 92-10-017 February 19, 1993)
 - *Performance-based ratemaking for electric utilities.*

Crossborder Energy

- Prepared Direct Testimony on Behalf of the SEGS Projects (C. 93-02-014/A. 93-03-053 — May 21, 1993)
 - Natural gas transportation service for wholesale customers.
- 15 a. Prepared Direct Testimony on Behalf of the **Canadian Association of Petroleum Producers** (A. 92-12-043/A. 93-03-038 — June 28, 1993)
 - b. Prepared Rebuttal Testimony of Behalf of the Canadian Association of Petroleum Producers (A. 92-12-043/A. 93-03-038 July 8, 1993)
 - Natural gas pipeline rate design issues.
- 16. a. Prepared Direct Testimony on Behalf of the SEGS Projects (C. 93-05-023 November 10, 1993)
 - b. Prepared Rebuttal Testimony on Behalf of the SEGS Projects (C. 93-05-023 January 10, 1994)
 - Utility overcharges for natural gas service; cogeneration parity issues.
- 17. Prepared Direct Testimony on Behalf of the **City of Vernon** (A. 93-09-006/A. 93-08-022/A. 93-09-048 June 17, 1994)
 - Natural gas rate design for wholesale customers; retail competition issues.
- 18. Prepared Direct Testimony of R. Thomas Beach on Behalf of the SEGS Projects (A. 94-01-021 August 5, 1994)
 - Natural gas rate design issues; rate parity for solar thermal power plants.
- 19. Prepared Direct Testimony on Transition Cost Issues on Behalf of Watson Cogeneration Company (R. 94-04-031/I. 94-04-032 — December 5, 1994)
 - Policy issues concerning the calculation, allocation, and recovery of transition costs associated with electric industry restructuring.
- 20. Prepared Direct Testimony on Nuclear Cost Recovery Issues on Behalf of the California Cogeneration Council (A. 93-12-025/I. 94-02-002 — February 14, 1995)
 - Recovery of above-market nuclear plant costs under electric restructuring.
- 21. Prepared Direct Testimony on Behalf of the Sacramento Municipal Utility District (A. 94-11-015 June 16, 1995)
 - Natural gas rate design; unbundled mainline transportation rates.

- 22. Prepared Direct Testimony on Behalf of Watson Cogeneration Company (A. 95-05-049 — September 11, 1995)
- Incremental Energy Rates; air quality compliance costs.
- 23. a. Prepared Direct Testimony on Behalf of the Canadian Association of Petroleum Producers (A. 92-12-043/A. 93-03-038/A. 94-05-035/A. 94-06-034/A. 94-09-056/A. 94-06-044 — January 30, 1996)
 - b. Prepared Rebuttal Testimony on Behalf of the **Canadian Association of Petroleum Producers** (A. 92-12-043/A. 93-03-038/A. 94-05-035/A. 94-06-034/A. 94-09-056/A. 94-06-044 — February 28, 1996)
 - Natural gas market dynamics; gas pipeline rate design.
- 24. Prepared Direct Testimony on Behalf of the California Cogeneration Council and Watson Cogeneration Company (A. 96-03-031 July 12, 1996)
 - Natural gas rate design: parity rates for cogenerators.
- 25. Prepared Direct Testimony on Behalf of the City of Vernon (A. 96-10-038 August 6, 1997)
 - Impacts of a major utility merger on competition in natural gas and electric markets.
- 26. a. Prepared Direct Testimony on Behalf of the Electricity Generation Coalition (A. 97-03-002 — December 18, 1997)
 - b. Prepared Rebuttal Testimony on Behalf of the Electricity Generation Coalition (A. 97-03-002 — January 9, 1998)
 - Natural gas rate design for gas-fired electric generators.
- 27. Prepared Direct Testimony on Behalf of the **City of Vernon** (A. 97-03-015 January 16, 1998)
 - Natural gas service to Baja, California, Mexico.

 b. Prepared Direct Testimony on Behalf of the California Cogeneration Council (A. 98-10-012/A. 98-01-031/A. 98-07-005 — March 15, 1999). c. Prepared Direct Testimony on Behalf of the California Cogeneration Council (A. 98-10-012/A. 98-01-031/A. 98-07-005 — June 25, 1999). e. Natural gas cost allocation and rate design for gas-fired electric generators. 29. a. Prepared Direct Testimony on Behalf of the California Cogeneration Council and Watson Cogeneration Company (R. 99-11-022 — February 11, 2000). b. Prepared Rebuttal Testimony on Behalf of the California Cogeneration Council and Watson Cogeneration Company (R. 99-11-022 — March 6, 2000). c. Prepared Direct Testimony on Line Loss Issues of behalf of the California Cogeneration Council (R. 99-11-022 — April 28, 2000). d. Supplemental Direct Testimony on Line Loss Issues of behalf of the California Cogeneration Council (R. 99-11-022 — April 28, 2000). e. Prepared Rebuttal Testimony on Line Loss Issues on behalf of the California Cogeneration Council (R. 99-11-022 — May 8, 2000). e. Prepared Rebuttal Testimony on Line Loss Issues on behalf of the California Cogeneration Council (R. 99-11-022 — May 8, 2000). e. Prepared Rebuttal Testimony on Line Loss Issues on behalf of the California Cogeneration Council (R. 99-11-022 — May 8, 2000). e. Market-based, avoided cost pricing for the electric output of gas-fired cogeneration facilities in the California market; electric line losses. 30. a. Direct Testimony on behalf of the Comprehensive Settlement Agreement on behalf of the Indicated Electric Generators in Support of the Comprehensive Gas OII Settlement Agreement for Southern California Gas Company and San Diego Gas & Electric Company y, 1.99-07-003 — May 5, 2000). b. Rebuttal Testimony in Support of the Comprehensive Settlement Agreement on behalf of the Indicated Electric Generators. 31. a. Prepared Direct Testimony on the Cogeneration Gas	28.	a.	Prepared Direct Testimony on Behalf of the California Cogeneration Council and Watson Cogeneration Company (A. 98-10-012/A. 98-10-031/A. 98-07-005 — March 4, 1999)
 c. Prepared Direct Testimony on Behalf of the California Cogeneration Council (A. 98-10-012/A. 98-01-031/A. 98-07-005 — June 25, 1999). Natural gas cost allocation and rate design for gas-fired electric generators. 29. a. Prepared Direct Testimony on Behalf of the California Cogeneration Council and Watson Cogeneration Company (R. 99-11-022 — February 11, 2000). b. Prepared Rebuttal Testimony on Behalf of the California Cogeneration Council and Watson Cogeneration Company (R. 99-11-022 — March 6, 2000). c. Prepared Direct Testimony on Line Loss Issues of behalf of the California Cogeneration Council (R. 99-11-022 — March 6, 2000). d. Supplemental Direct Testimony on Line Loss Issues of behalf of the California Cogeneration Council (R. 99-11-022 — April 28, 2000). e. Prepared Rebuttal Testimony on Line Loss Issues on behalf of the California Cogeneration Council (R. 99-11-022 — May 8, 2000). e. Prepared Rebuttal Testimony on Line Loss Issues on behalf of the California Cogeneration Council (R. 99-11-022 — May 8, 2000). e. Market-based, avoided cost pricing for the electric output of gas-fired cogeneration facilities in the California market; electric line losses. 30. a. Direct Testimony on behalf of the Indicated Electric Generators in Support of the Comprehensive Gas OII Settlement Agreement for Southern California Gas Company and San Diego Gas & Electric Company (I. 99-07-003 — May 5, 2000). b. Rebuttal Testimony in Support of the Comprehensive Settlement Agreement on behalf of the Indicated Electric Generators. 31. a. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration council (A. 00-04-002 — September 1, 2000). b. Repared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration council (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on behalf of Southern Energy California (A. 00-04-002		b.	Prepared Direct Testimony on Behalf of the California Cogeneration Council (A. 98-10-012/A. 98-01-031/A. 98-07-005 — March 15, 1999).
 Natural gas cost allocation and rate design for gas-fired electric generators. 29. a. Prepared Direct Testimony on Behalf of the California Cogeneration Council and Watson Cogeneration Company (R. 99-11-022 — February 11, 2000). b. Prepared Rebuttal Testimony on Behalf of the California Cogeneration Council and Watson Cogeneration Company (R. 99-11-022 — March 6, 2000). c. Prepared Direct Testimony on Line Loss Issues of behalf of the California Cogeneration Council (R. 99-11-022 — April 28, 2000). d. Supplemental Direct Testimony in Response to ALJ Cooke's Request on behalf of the California Cogeneration Council and Watson Cogeneration Company (R. 99-11-022 — April 28, 2000). e. Prepared Rebuttal Testimony on Line Loss Issues on behalf of the California Cogeneration Council (R. 99-11-022 — May 8, 2000). e. Prepared Rebuttal Testimony on Line Loss Issues on behalf of the California Cogeneration Council (R. 99-11-022 — May 8, 2000). e. Market-based, avoided cost pricing for the electric output of gas-fired cogeneration facilities in the California market; electric line losses. 30. a. Direct Testimony on behalf of the Indicated Electric Generators in Support of the Comprehensive Gas OII Settlement Agreement for Southern California Gas Company and San Diego Gas & Electric Company (I. 99-07-003 — May 5, 2000). b. Rebuttal Testimony in Support of the Comprehensive Settlement Agreement on behalf of the Indicated Electric Generators. 31. a. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on behalf of Southern Energy California (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on behalf of Southern Energy California (A. 00-04-002 — September 1, 2000). 		C.	Prepared Direct Testimony on Behalf of the California Cogeneration Council (A. 98-10-012/A. 98-01-031/A. 98-07-005 — June 25, 1999).
 29. a. Prepared Direct Testimony on Behalf of the California Cogeneration Council and Watson Cogeneration Company (R. 99-11-022 — February 11, 2000). b. Prepared Rebuttal Testimony on Behalf of the California Cogeneration Council and Watson Cogeneration Company (R. 99-11-022 — March 6, 2000). c. Prepared Direct Testimony on Line Loss Issues of behalf of the California Cogeneration Council (R. 99-11-022 — April 28, 2000). d. Supplemental Direct Testimony in Response to ALJ Cooke's Request on behalf of the California Cogeneration Council and Watson Cogeneration Company (R. 99-11-022 — April 28, 2000). e. Prepared Rebuttal Testimony on Line Loss Issues on behalf of the California Cogeneration Council (R. 99-11-022 — May 8, 2000). e. Market-based, avoided cost pricing for the electric output of gas-fired cogeneration facilities in the California market; electric line losses. 30. a. Direct Testimony on behalf of the Indicated Electric Generators in Support of the Comprehensive Gas OII Settlement Agreement for Southern California Gas Company and San Diego Gas & Electric Company (1. 99-07-003 — May 5, 2000). b. Rebuttal Testimony in Support of the Comprehensive Settlement Agreement on behalf of the Indicated Electric Generators. 31. a. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Repared Direct Testimony on behalf of Southern Energy California (A. 00-04-002 — September 1, 2000). b. Natural gas cost allocation and rate design for gas-fired electric generators. 		• 10 1	Natural gas cost allocation and rate design for gas-fired electric generators.
 b. Prepared Rebuttal Testimony on Behalf of the California Cogeneration Council and Watson Cogeneration Company (R. 99-11-022 — March 6, 2000). c. Prepared Direct Testimony on Line Loss Issues of behalf of the California Cogeneration Council (R. 99-11-022 — April 28, 2000). d. Supplemental Direct Testimony in Response to ALJ Cooke's Request on behalf of the California Cogeneration Council and Watson Cogeneration Company (R. 99-11-022 — April 28, 2000). e. Prepared Rebuttal Testimony on Line Loss Issues on behalf of the California Cogeneration Council (R. 99-11-022 — May 8, 2000). e. Market-based, avoided cost pricing for the electric output of gas-fired cogeneration facilities in the California market; electric line losses. 30. a. Direct Testimony on behalf of the Indicated Electric Generators in Support of the Comprehensive Gas OII Settlement Agreement for Southern California Gas Company and San Diego Gas & Electric Company (1. 99-07-003 — May 5, 2000). b. Rebuttal Testimony in Support of the Comprehensive Settlement Agreement on behalf of the Indicated Electric Generators. Natural gas rates and services on the Southern California Gas Company system. Natural gas cost allocation and rate design for gas-fired electric generators. 31. a. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on the design for gas-fired electric generators. 	29.	a.	Prepared Direct Testimony on Behalf of the California Cogeneration Council and Watson Cogeneration Company (R 99-11-022 — February 11, 2000)
 and Watson Cogeneration Company (R. 99-11-022 — March 6, 2000). c. Prepared Direct Testimony on Line Loss Issues of behalf of the California Cogeneration Council (R. 99-11-022 — April 28, 2000). d. Supplemental Direct Testimony in Response to ALJ Cooke's Request on behalf of the California Cogeneration Council and Watson Cogeneration Company (R. 99-11-022 — April 28, 2000). e. Prepared Rebuttal Testimony on Line Loss Issues on behalf of the California Cogeneration Council (R. 99-11-022 — May 8, 2000). e. Market-based, avoided cost pricing for the electric output of gas-fired cogeneration facilities in the California market; electric line losses. 30. a. Direct Testimony on behalf of the Indicated Electric Generators in Support of the Comprehensive Gas OII Settlement Agreement for Southern California Gas Company and San Diego Gas & Electric Company (I. 99-07-003 — May 5, 2000). b. Rebuttal Testimony in Support of the Comprehensive Settlement Agreement on behalf of the Indicated Electric Generators. 31. a. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on behalf of Southern Energy California (A. 00-04-002 — September 1, 2000). b. Natural gas cost allocation and rate design for gas-fired electric generators. 		b.	Prepared Rebuttal Testimony on Behalf of the California Cogeneration Council
 c. Prepared Direct Testimony on Line Loss Issues of behalf of the California Cogeneration Council (R. 99-11-022 — April 28, 2000). d. Supplemental Direct Testimony in Response to ALJ Cooke's Request on behalf of the California Cogeneration Council and Watson Cogeneration Company (R. 99-11-022 — April 28, 2000). e. Prepared Rebuttal Testimony on Line Loss Issues on behalf of the California Cogeneration Council (R. 99-11-022 — May 8, 2000). e. Market-based, avoided cost pricing for the electric output of gas-fired cogeneration facilities in the California market; electric line losses. 30. a. Direct Testimony on behalf of the Indicated Electric Generators in Support of the Comprehensive Gas OII Settlement Agreement for Southern California Gas Company and San Diego Gas & Electric Company (I. 99-07-003 — May 5, 2000). b. Rebuttal Testimony in Support of the Comprehensive Settlement Agreement on behalf of the Indicated Electric generators. 31. a. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Gas first electric generators. 31. a. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Natural gas cost allocation and rate design for gas-fired electric generators. 			and Watson Cogeneration Company (R. 99-11-022 — March 6, 2000).
 Cogeneration Council (R. 99-11-022 — April 28, 2000). d. Supplemental Direct Testimony in Response to ALJ Cooke's Request on behalf of the California Cogeneration Council and Watson Cogeneration Company (R. 99-11-022 — April 28, 2000). e. Prepared Rebuttal Testimony on Line Loss Issues on behalf of the California Cogeneration Council (R. 99-11-022 — May 8, 2000). e. Market-based, avoided cost pricing for the electric output of gas-fired cogeneration facilities in the California market; electric line losses. 30. a. Direct Testimony on behalf of the Indicated Electric Generators in Support of the Comprehensive Gas OII Settlement Agreement for Southern California Gas Company and San Diego Gas & Electric Company (I. 99-07-003 — May 5, 2000). b. Rebuttal Testimony in Support of the Comprehensive Settlement Agreement on behalf of the Indicated Electric Generators (I. 99-07-003 — May 19, 2000). e. Testimony in support of a comprehensive restructuring of natural gas rates and services on the Southern California Gas Company system. Natural gas cost allocation and rate design for gas-fired electric generators. 31. a. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Natural gas cost allocation and rate design for gas-fired electric generators. 		C.	Prepared Direct Testimony on Line Loss Issues of behalf of the California
 d. Supplemental Direct Testimony in Response to ALJ Cooke's Request on behalf of the California Cogeneration Council and Watson Cogeneration Company (R. 99-11-022 — April 28, 2000). e. Prepared Rebuttal Testimony on Line Loss Issues on behalf of the California Cogeneration Council (R. 99-11-022 — May 8, 2000). Market-based, avoided cost pricing for the electric output of gas-fired cogeneration facilities in the California market; electric line losses. 30. a. Direct Testimony on behalf of the Indicated Electric Generators in Support of the Comprehensive Gas OII Settlement Agreement for Southern California Gas Company and San Diego Gas & Electric Company (I. 99-07-003 — May 5, 2000). b. Rebuttal Testimony in Support of the Comprehensive Settlement Agreement on behalf of the Indicated Electric Generators (I. 99-07-003 — May 5, 2000). Testimony in support of a comprehensive restructuring of natural gas rates and services on the Southern California Gas Company system. Natural gas cost allocation and rate design for gas-fired electric generators. 31. a. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Returnal gas cost allocation and rate design for gas-fired electric generators. 		4	Cogeneration Council (R. 99-11-022 — April 28, 2000).
 e. Prepared Rebuttal Testimony on Line Loss Issues on behalf of the California Cogeneration Council (R. 99-11-022 — May 8, 2000). Market-based, avoided cost pricing for the electric output of gas-fired cogeneration facilities in the California market; electric line losses. 30. a. Direct Testimony on behalf of the Indicated Electric Generators in Support of the Comprehensive Gas OII Settlement Agreement for Southern California Gas Company and San Diego Gas & Electric Company (I. 99-07-003 — May 5, 2000). b. Rebuttal Testimony in Support of the Comprehensive Settlement Agreement on behalf of the Indicated Electric Generators (I. 99-07-003 — May 5, 2000). e. Testimony in support of a comprehensive restructuring of natural gas rates and services on the Southern California Gas Company system. Natural gas cost allocation and rate design for gas-fired electric generators. 31. a. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on behalf of Southern Energy California (A. 00-04-002 — September 1, 2000). b. Natural gas cost allocation and rate design for gas-fired electric generators. 		a.	the California Cogeneration Council and Watson Cogeneration Company (R. 99-11-022 — April 28, 2000)
 Cogeneration Council (R. 99-11-022 — May 8, 2000). Market-based, avoided cost pricing for the electric output of gas-fired cogeneration facilities in the California market; electric line losses. a. Direct Testimony on behalf of the Indicated Electric Generators in Support of the Comprehensive Gas OII Settlement Agreement for Southern California Gas Company and San Diego Gas & Electric Company (I. 99-07-003 — May 5, 2000). b. Rebuttal Testimony in Support of the Comprehensive Settlement Agreement on behalf of the Indicated Electric Generators (I. 99-07-003 — May 19, 2000). Testimony in support of a comprehensive restructuring of natural gas rates and services on the Southern California Gas Company system. Natural gas cost allocation and rate design for gas-fired electric generators. a. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on behalf of Southern Energy California (A. 00-04-002 — September 1, 2000). Natural gas cost allocation and rate design for gas-fired electric generators. 		e.	Prepared Rebuttal Testimony on Line Loss Issues on behalf of the California
 Market-based, avoided cost pricing for the electric output of gas-fired cogeneration facilities in the California market; electric line losses. 30. a. Direct Testimony on behalf of the Indicated Electric Generators in Support of the Comprehensive Gas OII Settlement Agreement for Southern California Gas Company and San Diego Gas & Electric Company (I. 99-07-003 — May 5, 2000). b. Rebuttal Testimony in Support of the Comprehensive Settlement Agreement on behalf of the Indicated Electric Generators (I. 99-07-003 — May 19, 2000). <i>Testimony in support of a comprehensive restructuring of natural gas rates and services on the Southern California Gas Company system. Natural gas cost allocation and rate design for gas-fired electric generators.</i> 31. a. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on behalf of Southern Energy California (A. 00-04-002 — September 1, 2000). b. Natural gas cost allocation and rate design for gas-fired electric generators. 			Cogeneration Council (R. 99-11-022 — May 8, 2000).
 Market-based, avoided cost pricing for the electric output of gas-fired cogeneration facilities in the California market; electric line losses. 30. a. Direct Testimony on behalf of the Indicated Electric Generators in Support of the Comprehensive Gas OII Settlement Agreement for Southern California Gas Company and San Diego Gas & Electric Company (I. 99-07-003 — May 5, 2000). b. Rebuttal Testimony in Support of the Comprehensive Settlement Agreement on behalf of the Indicated Electric Generators (I. 99-07-003 — May 19, 2000). e. Testimony in support of a comprehensive restructuring of natural gas rates and services on the Southern California Gas Company system. Natural gas cost allocation and rate design for gas-fired electric generators. 31. a. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on behalf of Southern Energy California (A. 00-04-002 — September 1, 2000). e. Natural gas cost allocation and rate design for gas-fired electric generators. 			Set 2.1. A submark of a main with concerned on competition in a court pair and
 30. a. Direct Testimony on behalf of the Indicated Electric Generators in Support of the Comprehensive Gas OII Settlement Agreement for Southern California Gas Company and San Diego Gas & Electric Company (I. 99-07-003 — May 5, 2000). b. Rebuttal Testimony in Support of the Comprehensive Settlement Agreement on behalf of the Indicated Electric Generators (I. 99-07-003 — May 19, 2000). • Testimony in support of a comprehensive restructuring of natural gas rates and services on the Southern California Gas Company system. Natural gas cost allocation and rate design for gas-fired electric generators. 31. a. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on behalf of Southern Energy California (A. 00-04-002 — September 1, 2000). • Natural gas cost allocation and rate design for gas-fired electric generators. 		•	Market-based, avoided cost pricing for the electric output of gas-fired
 30. a. Direct Testimony on behalf of the Indicated Electric Generators in Support of the Comprehensive Gas OII Settlement Agreement for Southern California Gas Company and San Diego Gas & Electric Company (I. 99-07-003 — May 5, 2000). b. Rebuttal Testimony in Support of the Comprehensive Settlement Agreement on behalf of the Indicated Electric Generators (I. 99-07-003 — May 19, 2000). • Testimony in support of a comprehensive restructuring of natural gas rates and services on the Southern California Gas Company system. Natural gas cost allocation and rate design for gas-fired electric generators. 31. a. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on behalf of Southern Energy California (A. 00-04-002 — September 1, 2000). b. Natural gas cost allocation and rate design for gas-fired electric generators. 			cogeneration facilities in the California market; electric line losses.
 Comprehensive Gas OII Settlement Agreement for Southern California Gas Company and San Diego Gas & Electric Company (I. 99-07-003 — May 5, 2000). Rebuttal Testimony in Support of the Comprehensive Settlement Agreement on behalf of the Indicated Electric Generators (I. 99-07-003 — May 19, 2000). <i>Testimony in support of a comprehensive restructuring of natural gas rates and</i> <i>services on the Southern California Gas Company system.</i> Natural gas cost allocation and rate design for gas-fired electric generators. a. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on behalf of Southern Energy California (A. 00-04-002 — September 1, 2000). Natural gas cost allocation and rate design for gas-fired electric generators. 	30.	a.	Direct Testimony on behalf of the Indicated Electric Generators in Support of the
 Company and San Diego Gas & Electric Company (I. 99-07-003 — May 5, 2000). Rebuttal Testimony in Support of the Comprehensive Settlement Agreement on behalf of the Indicated Electric Generators (I. 99-07-003 — May 19, 2000). <i>Testimony in support of a comprehensive restructuring of natural gas rates and</i> <i>services on the Southern California Gas Company system. Natural gas cost</i> <i>allocation and rate design for gas-fired electric generators.</i> a. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on behalf of Southern Energy California (A. 00-04-002 — September 1, 2000). <i>Natural gas cost allocation and rate design for gas-fired electric generators.</i> 			Comprehensive Gas OII Settlement Agreement for Southern California Gas
 b. Rebuttal Testimony in Support of the Comprehensive Settlement Agreement on behalf of the Indicated Electric Generators (I. 99-07-003 — May 19, 2000). Testimony in support of a comprehensive restructuring of natural gas rates and services on the Southern California Gas Company system. Natural gas cost allocation and rate design for gas-fired electric generators. 31. a. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on behalf of Southern Energy California (A. 00-04-002 — September 1, 2000). b. Natural gas cost allocation and rate design for gas-fired electric generators. 			Company and San Diego Gas & Electric Company (I. 99-07-003 — May 5, 2000).
 Testimony in support of a comprehensive restructuring of natural gas rates and services on the Southern California Gas Company system. Natural gas cost allocation and rate design for gas-fired electric generators. a. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on behalf of Southern Energy California (A. 00-04-002 — September 1, 2000). Natural gas cost allocation and rate design for gas-fired electric generators. 		b.	Rebuttal Testimony in Support of the Comprehensive Settlement Agreement on behalf of the Indicated Electric Generators (I. 99-07-003 — May 19, 2000).
 a. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on behalf of Southern Energy California (A. 00-04-002 — September 1, 2000). b. Natural gas cost allocation and rate design for gas-fired electric generators. 			Testimony in support of a comprehensive restructuring of natural are rates and
 31. a. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on behalf of Southern Energy California (A. 00-04-002 — September 1, 2000). • Natural gas cost allocation and rate design for gas-fired electric generators. 			services on the Southern California Gas Company system Natural gas cost
 31. a. Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A. 00-04-002 — September 1, 2000). b. Prepared Direct Testimony on behalf of Southern Energy California (A. 00-04-002 — September 1, 2000). • Natural gas cost allocation and rate design for gas-fired electric generators. 			allocation and rate design for gas-fired electric generators.
 b. Prepared Direct Testimony on behalf of Southern Energy California (A. 00-04-002 — September 1, 2000). Natural gas cost allocation and rate design for gas-fired electric generators. 	31.	a.	Prepared Direct Testimony on the Cogeneration Gas Allowance on behalf of the California Cogeneration Council (A, 00-04-002 — September 1, 2000)
• Natural gas cost allocation and rate design for gas-fired electric generators.		b.	Prepared Direct Testimony on behalf of Southern Energy California (A. 00-04-002 — September 1, 2000).
		•	Natural gas cost allocation and rate design for gas-fired electric generators.

32.	a.	Prepared Direct Testimony on behalf of Watson Cogeneration Company (A. 00-06-032 — September 18, 2000)
	b.	Prepared Rebuttal Testimony on behalf of Watson Cogeneration Company (A. 00-06-032 — October 6, 2000).
	• 112	Rate design for a natural gas "peaking service."
33.	a.	Prepared Direct Testimony on behalf of PG&E National Energy Group & Calpine Corporation (I, 00-11-002—April 25, 2001).
	b.	Prepared Rebuttal Testimony on behalf of PG&E National Energy Group & Calpine Corporation (I. 00-11-002—May 15, 2001).
	•	Terms and conditions of natural gas service to electric generators; gas curtailment policies.
34.	a.	Prepared Direct Testimony on behalf of the California Cogeneration Council (R. 99-11-022—May 7, 2001).
	b.	Prepared Rebuttal Testimony on behalf of the California Cogeneration Council (R. 99-11-022—May 30, 2001).
	(n•018)	Avoided cost pricing for alternative energy producers in California.
35.	a.	Prepared Direct Testimony of R. Thomas Beach in Support of the Application of Wild Goose Storage Inc. (A. 01-06-029—June 18, 2001)
	b.	Prepared Rebuttal Testimony of R. Thomas Beach on behalf of Wild Goose Storage (A. 01-06-029—November 2, 2001)
	•	Consumer benefits from expanded natural gas storage capacity in California.
36.	Prepar Berna	ed Direct Testimony of R. Thomas Beach on behalf of the County of San rdino (I. 01-06-047—December 14, 2001)
	•	Reasonableness review of a natural gas utility's procurement practices and storage operations.
37.	a.	Prepared Direct Testimony of R. Thomas Beach on behalf of the California Cogeneration Council (R. 01-10-024—May 31, 2002)
	b.	Prepared Supplemental Testimony of R. Thomas Beach on behalf of the California Cogeneration Council (R. 01-10-024—May 31, 2002)
	•015	Electric procurement policies for California's electric utilities in the aftermath of the California energy crisis.

- 38. Prepared Direct Testimony of R. Thomas Beach on behalf of the California Manufacturers & Technology Association (R. 02-01-011—June 6, 2002)
 - "Exit fees" for direct access customers in California.
- 39. Prepared Direct Testimony of R. Thomas Beach on behalf of the County of San Bernardino (A. 02-02-012 August 5, 2002)
 - General rate case issues for a natural gas utility; reasonableness review of a natural gas utility's procurement practices.
- 40. Prepared Direct Testimony of R. Thomas Beach on behalf of the **California** Manufacturers and Technology Association (A. 98-07-003 — February 7, 2003)
 - Recovery of past utility procurement costs from direct access customers.
- 41. a. Prepared Direct Testimony of R. Thomas Beach on behalf of the California Cogeneration Council, the California Manufacturers & Technology Association, Calpine Corporation, and Mirant Americas, Inc. (A 01-10-011 — February 28, 2003)
 - b. Prepared Rebuttal Testimony of R. Thomas Beach on behalf of the California Cogeneration Council, the California Manufacturers & Technology Association, Calpine Corporation, and Mirant Americas, Inc. (A 01-10-011 — March 24, 2003)
 - Rate design issues for Pacific Gas & Electric's gas transmission system (Gas Accord II).
- 42. a. Prepared Direct Testimony of R. Thomas Beach on behalf of the California Manufacturers & Technology Association; Calpine Corporation; Duke Energy North America; Mirant Americas, Inc.; Watson Cogeneration Company; and West Coast Power, Inc. (R. 02-06-041 — March 21, 2003)
 - b. Prepared Rebuttal Testimony of R. Thomas Beach on behalf of the California Manufacturers & Technology Association; Calpine Corporation; Duke Energy North America; Mirant Americas, Inc.; Watson Cogeneration Company; and West Coast Power, Inc. (R. 02-06-041 — April 4, 2003)
 - Cost allocation of above-market interstate pipeline costs for the California natural gas utilities.
- 43. Prepared Direct Testimony of R. Thomas Beach and Nancy Rader on behalf of the **California Wind Energy Association** (R. 01-10-024 April 1, 2003)
 - Design and implementation of a Renewable Portfolio Standard in California.

- 44. a. Prepared Direct Testimony of R. Thomas Beach on behalf of the **California Cogeneration Council** (R. 01-10-024 — June 23, 2003)
 - b. Prepared Supplemental Testimony of R. Thomas Beach on behalf of the **California Cogeneration Council** (R. 01-10-024 — June 29, 2003)
 - Power procurement policies for electric utilities in California.
- 45. Prepared Direct Testimony of R. Thomas Beach on behalf of the Indicated Commercial Parties (02-05-004 August 29, 2003)
 - Electric revenue allocation and rate design for commercial customers in southern California.
- 46. a. Prepared Direct Testimony of R. Thomas Beach on behalf of Calpine Corporation and the California Cogeneration Council (A. 04-03-021 — July 16, 2004)
 - b. Prepared Rebuttal Testimony of R. Thomas Beach on behalf of **Calpine Corporation and the California Cogeneration Council** (A. 04-03-021 — July 26, 2004)
 - Policy and rate design issues for Pacific Gas & Electric's gas transmission system (Gas Accord III).
- 47. Prepared Direct Testimony of R. Thomas Beach on behalf of the **California Cogeneration Council** (A. 04-04-003 — August 6, 2004)
 - Policy and contract issues concerning cogeneration QFs in California.
- 48. a. Prepared Direct Testimony of R. Thomas Beach on behalf of the California Cogeneration Council and the California Manufacturers and Technology Association (A. 04-07-044 — January 11, 2005)
 - b. Prepared Rebuttal Testimony of R. Thomas Beach on behalf of the California Cogeneration Council and the California Manufacturers and Technology Association (A. 04-07-044 — January 28, 2005)
 - Natural gas cost allocation and rate design for large transportation customers in northern California.
- 49. a. Prepared Direct Testimony of R. Thomas Beach on behalf of the California Manufacturers and Technology Association and the Indicated Commercial Parties (A. 04-06-024 — March 7, 2005)
 - b. Prepared Rebuttal Testimony of R. Thomas Beach on behalf of the California Manufacturers and Technology Association and the Indicated Commercial Parties (A. 04-06-024 — April 26, 2005)
 - Electric marginal costs, revenue allocation, and rate design for commercial and industrial electric customers in northern California.

52.

- 50. Prepared Direct Testimony of R. Thomas Beach on behalf of the **California Solar Energy** Industries Association (R. 04-03-017 — April 28, 2005)
 - Cost-effectiveness of the Million Solar Roofs Program.
- 51. Prepared Direct Testimony of R. Thomas Beach on behalf of Watson Cogeneration Company, the Indicated Producers, and the California Manufacturing and Technology Association (A. 04-12-004 — July 29, 2005)
 - Natural gas rate design policy; integration of gas utility systems.
 - a. Prepared Direct Testimony of R. Thomas Beach on behalf of the **California Cogeneration Council** (R. 04-04-003/R. 04-04-025 — August 31, 2005)
 - b. Prepared Rebuttal Testimony of R. Thomas Beach on behalf of the California Cogeneration Council (R. 04-04-003/R. 04-04-025 — October 28, 2005)
 - Avoided cost rates and contracting policies for OFs in California
- 53. a. Prepared Direct Testimony of R. Thomas Beach on behalf of the **California Manufacturers and Technology Association and the Indicated Commercial Parties** (A. 05-05-023 — January 20, 2006)
 - b. Prepared Rebuttal Testimony of R. Thomas Beach on behalf of the California Manufacturers and Technology Association and the Indicated Commercial Parties (A. 05-05-023 — February 24, 2006)
 - Electric marginal costs, revenue allocation, and rate design for commercial and industrial electric customers in southern California.
- 54. a. Prepared Direct Testimony of R. Thomas Beach on behalf of the California Producers (R. 04-08-018 – January 30, 2006)
 - b. Prepared Rebuttal Testimony of R. Thomas Beach on behalf of the **California Producers** (R. 04-08-018 – February 21, 2006)
 - Transportation and balancing issues concerning California gas production.
- 55. Prepared Direct Testimony of R. Thomas Beach on behalf of the California Manufacturers and Technology Association and the Indicated Commercial Parties (A. 06-03-005 — October 27, 2006)
 - Electric marginal costs, revenue allocation, and rate design for commercial and industrial electric customers in northern California.
- 56. Prepared Direct Testimony of R. Thomas Beach on behalf of the **California Cogeneration Council** (A. 05-12-030 — March 29, 2006)
 - Review and approval of a new contract with a gas-fired cogeneration project.

	80
Principal Consultant	Page 11
R. THOMAS BEACH	

- 57. a. Prepared Direct Testimony of R. Thomas Beach on behalf of Watson Cogeneration, Indicated Producers, the California Cogeneration Council, and the California Manufacturers and Technology Association (A. 04-12-004 — July 14, 2006)
 - b. Prepared Rebuttal Testimony of R. Thomas Beach on behalf of Watson Cogeneration, Indicated Producers, the California Cogeneration Council, and the California Manufacturers and Technology Association (A. 04-12-004 — July 31, 2006)
 - Restructuring of the natural gas system in southern California to include firm capacity rights; unbundling of natural gas services; risk/reward issues for natural gas utilities.
- 58. Prepared Direct Testimony of R. Thomas Beach on behalf of the **California Cogeneration Council** (R. 06-02-013 — March 2, 2007)
 - Utility procurement policies concerning gas-fired cogeneration facilities.
- 59. a. Prepared Direct Testimony of R. Thomas Beach on behalf of the Solar Alliance (A. 07-01-047 August 10, 2007)
 - b. Prepared Rebuttal Testimony of R. Thomas Beach on behalf of the Solar Alliance (A. 07-01-047 September 24, 2007)
 - Electric rate design issues that impact customers installing solar photovoltaic systems.
- 60. a. Prepared Direct Testimony of R,. Thomas Beach on Behalf of Gas Transmission Northwest Corporation (A. 07-12-021 — May 15, 2008)
 - b. Prepared Rebuttal Testimony of R,. Thomas Beach on Behalf of Gas Transmission Northwest Corporation (A. 07-12-021 — June 13, 2008)
 - Utility subscription to new natural gas pipeline capacity serving California.
- 61. a. Prepared Direct Testimony of R. Thomas Beach on behalf of the Solar Alliance (A. 08-03-015 September 12, 2008)
 - b. Prepared Rebuttal Testimony of R. Thomas Beach on behalf of the Solar Alliance (A. 08-03-015 October 3, 2008)
 - Issues concerning the design of a utility-sponsored program to install 500 MW of utility- and independently-owned solar photovoltaic systems.

- 62. Prepared Direct Testimony of R. Thomas Beach on behalf of the Solar Alliance (A. 08-03-002 October 31, 2008)
 - *Electric rate design issues that impact customers installing solar photovoltaic systems.*
- 63. a. Phase II Direct Testimony of R. Thomas Beach on behalf of Indicated Producers, the California Cogeneration Council, California Manufacturers and Technology Association, and Watson Cogeneration Company (A. 08-02-001 — December 23, 2008)
 - b. Phase II Rebuttal Testimony of R. Thomas Beach on behalf of Indicated Producers, the California Cogeneration Council, California Manufacturers and Technology Association, and Watson Cogeneration Company (A. 08-02-001 — January 27, 2009)
 - Natural gas cost allocation and rate design issues for large customers.
- 64. a. Prepared Direct Testimony of R. Thomas Beach on behalf of the **California Cogeneration Council** (A. 09-05-026 — November 4, 2009)
 - Natural gas cost allocation and rate design issues for large customers.
- a. Prepared Direct Testimony of R. Thomas Beach on behalf of Indicated Producers and Watson Cogeneration Company (A. 10-03-028 October 5, 2010)
 b. Prepared Rebuttal Testimony of R. Thomas Beach on behalf of Indicated
 - **Producers and Watson Cogeneration Company** (A. 10-03-028 October 26, 2010)
 - Revisions to a program of firm backbone capacity rights on natural gas pipelines.
- 66. Prepared Direct Testimony of R. Thomas Beach on behalf of the Solar Alliance (A. 10-03-014 October 6, 2010)
 - Electric rate design issues that impact customers installing solar photovoltaic systems.
- 67. Prepared Rebuttal Testimony of R. Thomas Beach on behalf of the Indicated Settling Parties (A. 09-09-013 October 11, 2010)
 - Testimony on proposed modifications to a broad-based settlement of rate-related issues on the Pacific Gas & Electric natural gas pipeline system.

- 68. a. Supplemental Prepared Direct Testimony of R. Thomas Beach on behalf of Sacramento Natural Gas Storage, LLC (A. 07-04-013 — December 6, 2010)
 - b. Supplemental Prepared Rebuttal Testimony of R. Thomas Beach on behalf of Sacramento Natural Gas Storage, LLC (A. 07-04-013 — December 13, 2010)
 c. Supplemental Prepared Reply Testimony of R. Thomas Beach on behalf of
 - Sacramento Natural Gas Storage, LLC (A. 07-04-013 December 20, 2010)
 - Local reliability benefits of a new natural gas storage facility.
- 69. Prepared Direct Testimony of R. Thomas Beach on behalf of **The Vote Solar Initiative** (A. 10-11-015—June 1, 2011)
 - Distributed generation policies; utility distribution planning.
- 70. Prepared Reply Testimony of R. Thomas Beach on behalf of the Solar Alliance (A. 10-03-014—August 5, 2011)
 - Electric rate design for commercial & industrial solar customers.
- 71. Prepared Direct Testimony of R. Thomas Beach on behalf of the **Solar Energy Industries** Association (A. 11-06-007—February 6, 2012)
 - Electric rate design for solar customers; marginal costs.
- a. Prepared Direct Testimony of R. Thomas Beach on behalf of the Northern California Indicated Producers (R.11-02-019—January 31, 2012)
 b. Prepared Rebuttal Testimony of R. Thomas Beach on behalf of the Northern
 - California Indicated Producers (R. 11-02-019—February 28, 2012)
 - Natural gas pipeline safety policies and costs
- 73. Prepared Direct Testimony of R. Thomas Beach on behalf of the **Solar Energy Industries** Association (A. 11-10-002—June 12, 2012)
 - Electric rate design for solar customers; marginal costs.
- 74. Prepared Direct Testimony of R. Thomas Beach on behalf of the Southern California Indicated Producers and Watson Cogeneration Company (A. 11-11-002—June 19, 2012)
 - Natural gas pipeline safety policies and costs

75.	a.	Testimony of R. Thomas Beach on behalf of the California Cogeneration Council (R. 12-03-014—June 25, 2012)
	b.	Reply Testimony of R. Thomas Beach on behalf of the California Cogeneration Council (R. 12-03-014—July 23, 2012)
	•	Ability of combined heat and power resources to serve local reliability needs in southern California.
76.	a.	Prepared Testimony of R. Thomas Beach on behalf of the Southern California Indicated Producers and Watson Cogeneration Company (A. 11-11-002, Phase 2—November 16, 2012)
	b.	Prepared Rebuttal Testimony of R. Thomas Beach on behalf of the Southern California Indicated Producers and Watson Cogeneration Company (A.
		11-11-002, Phase 2—December 14, 2012)
	•	Allocation and recovery of natural gas pipeline safety costs.
77.	Prepa Asso	ared Direct Testimony of R. Thomas Beach on behalf of the Solar Energy Industries ciation (A. 12-12-002—May 10, 2013)
	•	Electric rate design for commercial & industrial solar customers; marginal costs.
78.	Prepa Asso	ared Direct Testimony of R. Thomas Beach on behalf of the Solar Energy Industries ciation (A. 13-04-012—December 13, 2013)
	•	Electric rate design for commercial & industrial solar customers; marginal costs.
79.	Prepa Asso	ared Direct Testimony of R. Thomas Beach on behalf of the Solar Energy Industries ciation (A. 13-12-015—June 30, 2014)
	• ubel (Electric rate design for commercial & industrial solar customers; residential time-of-use rate design issues.

Crossborder Energy

Page 14

- 80. a. Prepared Direct Testimony of R. Thomas Beach on behalf of **Calpine Corporation** and the **Indicated Shippers** (A. 13-12-012—August 11, 2014)
 - b. Prepared Direct Testimony of R. Thomas Beach on behalf of Calpine Corporation, the Canadian Association of Petroleum Producers, Gas Transmission Northwest, and the City of Palo Alto (A. 13-12-012—August 11, 2014)
 - c. Prepared Rebuttal Testimony of R. Thomas Beach on behalf of **Calpine Corporation** (A. 13-12-012—September 15, 2014)
 - d. Prepared Rebuttal Testimony of R. Thomas Beach on behalf of Calpine Corporation, the Canadian Association of Petroleum Producers, Gas Transmission Northwest, and the City of Palo Alto (A. 13-12-012—September 15, 2014)
 - Rate design, cost allocation, and revenue requirement issues for the gas transmission system of a major natural gas utility.
- 81. Prepared Direct Testimony of R. Thomas Beach on behalf of the Solar Energy Industries Association (R. 12-06-013—September 15, 2014)
 - Comprehensive review of policies for rate design for residential electric customers in California.
- 82. Prepared Direct Testimony of R. Thomas Beach on behalf of the Solar Energy Industries Association (A. 14-06-014—March 13, 2015)
 - Electric rate design for commercial & industrial solar customers; marginal costs.
- 83. a. Prepared Direct Testimony of R. Thomas Beach on behalf of the Solar Energy Industries Association (A.14-11-014—May 1, 2015)
 - b. Prepared Rebuttal Testimony of R. Thomas Beach on behalf of the Solar Energy Industries Association (A. 14-11-014—May 26, 2015)
 - Time-of-use periods for residential TOU rates.
- 84. Prepared Rebuttal Testimony of R. Thomas Beach on behalf of the **Joint Solar Parties** (R. 14-07-002—September 30, 2015)
 - Electric rate design issues concerning proposals for the net energy metering successor tariff in California.

EXPERT WITNESS TESTIMONY BEFORE THE COLORADO PUBLIC UTILITIES COMMISSION

- 1. Direct Testimony and Exhibits of R. Thomas Beach on behalf of the Colorado Solar Energy Industries Association and the Solar Alliance, (Docket No. 09AL-299E – October 2, 2009).
 - *Electric rate design policies to encourage the use of distributed solar generation.*
- 2. Direct Testimony and Exhibits of R. Thomas Beach on behalf of the Vote Solar Initiative and the Interstate Renewable Energy Council, (Docket No. 11A-418E September 21, 2011).
 - Development of a community solar program for Xcel Energy.

EXPERT WITNESS TESTIMONY BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION

- 1. Direct Testimony of R. Thomas Beach on behalf of the Idaho Conservation League (Case No. IPC-E-12-27—May 10, 2013)
 - Costs and benefits of net energy metering in Idaho.
- 2. a. Direct Testimony of R. Thomas Beach on behalf of the Idaho Conservation League and the Sierra Club (Case Nos. IPC-E-15-01/AVU-4-15-01/PAC-E-15-03 — April 23, 2015)
 - Rebuttal Testimony of R. Thomas Beach on behalf of the Idaho Conservation League and the Sierra Club (Case Nos. IPC-E-15-01/AVU-4-15-01/PAC-E-15-03 — May 14, 2015)
 - Issues concerning the term of PURPA contracts in Idaho.

EXPERT WITNESS TESTIMONY BEFORE THE MINNESOTA PUBLIC UTILITIES COMMISSION

- 1. Direct and Rebuttal Testimony of R. Thomas Beach on Behalf of Geronimo Energy, LLC. (In the Matter of the Petition of Northern States Power Company to Initiate a Competitive Resource Acquisition Process [OAH Docket No. 8-2500-30760, MPUC Docket No. E002/CN-12-1240, September 27 and October 18, 2013])
 - Testimony in support of a competitive bid from a distributed solar project in an all-source solicitation for generating capacity.

EXPERT WITNESS TESTIMONY BEFORE THE PUBLIC UTILITIES COMMISSION OF NEVADA

- 1. Pre-filed Direct Testimony on Behalf of the Nevada Geothermal Industry Council (Docket No. 97-2001—May 28, 1997)
 - Avoided cost pricing for the electric output of geothermal generation facilities in Nevada.
- 2. Pre-filed Direct Testimony on Behalf of Nevada Sun-Peak Limited Partnership (Docket No. 97-6008—September 5, 1997)
 - *QF pricing issues in Nevada.*
- 3. Pre-filed Direct Testimony on Behalf of the Nevada Geothermal Industry Council (Docket No. 98-2002 June 18, 1998)
 - Market-based, avoided cost pricing for the electric output of geothermal generation facilities in Nevada.

EXPERT WITNESS TESTIMONY BEFORE THE NEW MEXICO PUBLIC REGULATION COMMISSION

- 1. Direct Testimony of R. Thomas Beach on Behalf of the Interstate Renewable Energy Council (Case No. 10-00086-UT—February 28, 2011)
 - Testimony on proposed standby rates for new distributed generation projects; cost-effectiveness of DG in New Mexico.
- 2. Direct Testimony and Exhibits of R. Thomas Beach on behalf of the New Mexico Independent Power Producers (Case No. 11-00265-UT, October 3, 2011)
 - Cost cap for the Renewable Portfolio Standard program in New Mexico

EXPERT WITNESS TESTIMONY BEFORE THE NORTH CAROLINA UTILITIES COMMISSION

- Direct, Response, and Rebuttal Testimony of R. Thomas Beach on Behalf of the North Carolina Sustainable Energy Association. (In the Matter of Biennial Determination of Avoided Cost Rates for Electric Utility Purchases from Qualifying Facilities – 2014; Docket E-100 Sub 140; April 25, May 30, and June 20, 2014)
 - Testimony on avoided cost issues related to solar and renewable qualifying facilities in North Carolina.

EXPERT WITNESS TESTIMONY BEFORE THE PUBLIC UTILITIES COMMISSION OF OREGON

- 1. a. Direct Testimony of Behalf of Weyerhaeuser Company (UM 1129 August 3, 2004)
 - b. Surrebuttal Testimony of Behalf of Weyerhaeuser Company (UM 1129 October 14, 2004)
- 2. a. Direct Testimony of Behalf of Weyerhaeuser Company and the Industrial Customers of Northwest Utilities (UM 1129 / Phase II February 27, 2006)
 - b. Rebuttal Testimony of Behalf of Weyerhaeuser Company and the Industrial Customers of Northwest Utilities (UM 1129 / Phase II — April 7, 2006)
 - Policies to promote the development of cogeneration and other qualifying facilities in Oregon.

EXPERT WITNESS TESTIMONY BEFORE THE PUBLIC SERVICE COMMISSION OF SOUTH CAROLINA

- 1. Direct Testimony and Exhibits of R. Thomas Beach on behalf of **The Alliance for Solar Choice** (Docket No. 2014-246-E – December 11, 2014)
 - Methodology for evaluating the cost-effectiveness of net energy metering

EXPERT WITNESS TESTIMONY BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH

- 1. Direct Testimony of R. Thomas Beach on behalf of the Sierra Club (Docket No. 15-035-53—September 15, 2015)
 - Issues concerning the term of PURPA contracts in Idaho.

EXPERT WITNESS TESTIMONY BEFORE THE VERMONT PUBLIC SERVICE BOARD

- 1. Pre-filed Testimony of R. Thomas Beach and Patrick McGuire on Behalf of Allco Renewable Energy Limited (Docket No. 8010 — September 26, 2014)
 - Avoided cost pricing issues in Vermont

EXPERT WITNESS TESTIMONY BEFORE THE VIRGINIA CORPORATION COMMISSION

- 1. Direct Testimony and Exhibits of R. Thomas Beach on Behalf of the Maryland District of Columbia Virginia Solar Energy Industries Association, (Case No. PUE-2011-00088, October 11, 2011)
 - *Cost-effectiveness of, and standby rates for, net-metered solar customers.*

LITIGATION EXPERIENCE

Mr. Beach has been retained as an expert in a variety of civil litigation matters. His work has included the preparation of reports on the following topics:

- The calculation of damages in disputes over the pricing terms of natural gas sales contracts (2 separate cases).
- The valuation of a contract for the purchase of power produced from wind generators.
- The compliance of cogeneration facilities with the policies and regulations applicable to Qualifying Facilities (QFs) under PURPA in California.
- Audit reports on the obligations of buyers and sellers under direct access electric contracts in the California market (2 separate cases).
- The valuation of interstate pipeline capacity contracts (3 separate cases).

In several of these matters, Mr. Beach was deposed by opposing counsel. Mr. Beach has also testified at trial in the bankruptcy of a major U.S. energy company, and has been retained as a consultant in anti-trust litigation concerning the California natural gas market in the period prior to and during the 2000-2001 California energy crisis.
1 **Appendix B** 2 **EXPERIENCE IN OTHER STATES:** 3 NEVADA, CALIFORNIA, AND MISSISSIPPI 4 5 1. Nevada 6 The Public Utilities Commission of Nevada ("PUCN") adopted a multi-7 perspective approach to the benefits and costs of net metering in the study which it released on July 1, 2014.¹ The consulting firm Energy and Environmental 8 9 Economics (E3) performed the analytic work for this study, and I served on a 10 Stakeholder Committee that the PUCN convened to provide input on the study 11 methodology and analysis. Figure B-1 below shows the costs and benefits of net-12 metering for solar PV systems in Nevada going forward, in the years 2014-2016, 13 from each of the key stakeholders' perspectives.² 14

15 Figure B-1: Public Utilities Commission of Nevada NEM Benefit-Cost Results

16 17

Crossborder Energy

² This figure is from the "Results" tab of the "Nevada Public Tool" model, with the model set to produce results for solar PV and for the going-forward period of 2014-2016.

Notably, the Nevada study showed that NEM is cost-effective for nonparticipating ratepayers (*i.e.*, the benefits in the RIM test exceeded the costs), while the costs are somewhat higher than the benefits for participants (*i.e.*, for solar customers). As with any such set of cost-effectiveness tests, it is not reasonable or practical to expect each of these tests to achieve a precise 1.0 benefit/cost ratio. Instead, the goal should be to achieve a reasonable, equitable balance of benefits and costs for all concerned – solar customers, other ratepayers, and the utility system as a whole. In my judgment, the Nevada study demonstrated that NEM at the full retail rate, without any further rate design modifications, achieved that desired "rough justice" balance of interests in Nevada.

The Nevada Commission subsequently moved away from the use of a 13 14 long-term benefit-cost approach to analyze NEM in that state. In 2015, in 15 response to new legislation, the PUCN reviewed a study from NV Energy that 16 was limited to the short-term cost of service for residential and small commercial 17 customers who install solar DG. The PUCN's subsequent decision on December 18 23, 2015 accepted the results of that study, and, based on that evidence, found that 19 there was a significant cost shift from non-participating ratepayers to solar DG 20 customers. As a result, the PUCN ended NEM in Nevada, increased the fixed 21 monthly customer charge for DG customers, and reduced the export rate credited to DG systems from the full retail rate (about 11 cents per kWh for residential 22 23 customers) to an energy-only avoided cost rate of 2.6 cents per kWh. The PUCN 24 took this action even though its order found that there are the following 11 25 components to the net benefits of DG (based on an adopted stipulation on NEM 26 issues from South Carolina), and that it was only able to quantify the first two 27 components of DG value in the adopted 2.6 cents per kWh export rate:

- 1. Avoided energy costs
- 2. Line losses
- 30 3. Avoided capacity

1

2

3

4

5

6

7

8

9

10

11

12

28

29

31

32

- 4. Ancillary services
 - 5. Transmission and distribution capacity

B-2

Crossborder Energy

000074

6. Avoided criteria pollutants
7. Avoided CO₂ emission costs
8. Fuel hedging
9. Utility integration and interconnection costs
10. Utility administration costs
11. Environmental costs³
The impacts of the December 2015 decision have been devastating for the solar DG market in Nevada. The reduction in the export rate and the increased fixed charge have reduced the bill savings available to NEM customers in Nevada by 40% or more. Solar DG is no longer economic for new systems. This is the

fixed charge have reduced the bill savings available to NEM customers in Nevada by 40% or more. Solar DG is no longer economic for new systems. This is the case today, even though the PUCN, most recently, has grandfathered the 32,000 existing NEM customers under the prior NEM rules with a full retail rate credit for exported power.⁴ In sum, the elimination of NEM and, in particular, the reduction in the export rate, has decimated the rooftop solar market in Nevada, resulting in more than 1,000 documented layoffs at solar companies.⁵

18

1

2

3

4

5

6

7 8 9

10

19 2. California

20 The investor-owned utilities in California have reached or are approaching 21 that state's 5% cap on NEM systems. In 2015, the California Commission asked 22 parties to analyze their proposals for a NEM successor tariff using a common 23 "Public Tool" spreadsheet program similar to the Nevada NEM benefit-cost 24 model. Like the Nevada model, the California Public Tool analyzes a proposed 25 tariff from multiple perspectives, using all of the SPM cost-effectiveness tests and 26 looking at the long-term, life-cycle costs and benefits. The CPUC received 27 detailed analyses of NEM benefits and costs using the Public Tool from a variety 28 of parties. In January 2016, the California commission decided to extend NEM in 29 California until a further review in 2019, with certain changes such as requiring 30 NEM customers to be on TOU rates, removing certain public benefit charges

Crossborder Energy

³ See PUCN December 23, 2015 Order in Dockets Nos. 15-07-041 and 15-07-042, at pp. 66-67 and 95-96.

⁴ See PUCN September 16, 2016 Order in Dockets Nos. 16-07-028 and 16-07-029.

⁵ See Prepared Direct and Rebuttal Testimonies of R. Thomas Beach on behalf of TASC, served February 1 and 5, 2016 in PUCN Dockets Nos. 15-07-041 and 15-07-042.

from export rates, and requiring NEM customers to pay interconnection costs. The CPUC's order does not rely on the Public Tool analyses, because important information related to both costs (rate design changes) and benefits (locational benefits on the distribution grid and societal benefits) remain under development in other CPUC proceedings. However, the CPUC made clear that it intends to continue to refine and to use this SPM-based, long-term benefit-cost approach in its future evaluations of NEM and DG.⁶

9 3. Mississippi

1

2

3

4

5

6

78

10 The Public Service Commission of Mississippi completed a NEM 11 benefit/cost analysis in 2014, and NEM is being implemented for the first time in Mississippi.⁷ As in the Nevada NEM study, the Mississippi study considered the 12 13 three principal perspectives discussed above, with a focus on the TRC test 14 because that test best captures the benefits and cost for the state as a whole from 15 this new resource. The Mississippi study also used a 25-year time horizon. The following figure summarizes the mid-case costs and benefits from Mississippi's 16 17 TRC analysis, plus the maximum low and high sensitivity cases for the benefits.

auggested that salar-cust attracts should be compensated at a rate <u>higher</u> than retain rates. This higher rate would be based on the utilities, avoided cost beinglift, so that it would not shift costs to non-participents.¹ Finally, the Mississippi Study entiodeed the use of the traditional RIM fear, particularly in the context of a new NEM program. The problem with the AIM rest is that the context of a new the RIM tast is simply a re-all scatton of costs which the utilities have already incurred and which are not incremental costs resulting from the NEM program.

Crossborder Energy

⁶ See CPUC Decision 16-01-044, at pp. 48-50, 54-61, and 80-82.

⁷ Elizabeth A. Stanton, *et al.*, *Net Metering in Mississippi: Costs, Benefits, and Policy Considerations* (Synapse Energy Economics for the Public Service Commission of Mississippi, released September 19, 2014); hereafter "Mississippi Study." Available at <u>http://www.synapse-</u> energy.com/sites/default/files/Net%20Metering%20in%20Mississippi.pdf.

1 Figure B-2: Public Service Commission of Mississippi NEM Study Results

23

4 As a result of this analysis, the Mississippi study concluded that net metered solar 5 projects will provide a net benefit to Mississippi in almost all of the cases considered. However, the study's analysis of the Participant cost test expressed 6 7 concern that NEM bill savings at the retail rate will not provide adequate benefits 8 to drive significant adoption of solar DG in the state. As a result, the study 9 suggested that solar customers should be compensated at a rate higher than retail 10 rates. This higher rate would be based on the utilities' avoided cost benefits, so that it would not shift costs to non-participants.⁸ Finally, the Mississippi Study 11 12 criticized the use of the traditional RIM test, particularly in the context of a new 13 NEM program. The problem with the RIM test is that the cost shift measured by 14 the RIM test is simply a re-allocation of costs which the utilities have already 15 incurred and which are not incremental costs resulting from the NEM program. 16 Due to this limitation, the study concluded that RIM test should not be used to 17 judge the merits of the new NEM program.9

⁸ Mississippi Study, at pp. 49-50.

⁹ *Ibid.*, at pp. 41-43 and Figure 18.

B-5

Crossborder Energy

000077

Appendix C

DE 16-576 Outline of Costs & Benefits of NM Systems and Related Variables and Rate Components to be Considered

The New Hampshire Sustainable Energy Association is providing the following list of proposed costs and benefits of net metering systems in order to foster a conversation at the next technical session. The provision of this list should not be construed as a waiver of or act to foreclose NHSEA's ability to address different or additional costs and benefits in this docket.

I. Avoided Energy Supply Costs and Related Benefits

(See Puc 903.02 as a starting point)

- a. Generation LMP, simple average vs. time weighted (RTP)
- b. Ancillary Charges related to and linked to LMP charges
 - i. Ancillary Markets (i.e. Regulation Market, Forward Reserve Mark et, Real-Time

Reserve Market, Transitional Demand Response Program)

- ii. Net Commitment-Period Compensation, 1st & 2nd contingency
- iii. Miscellaneous Credits/Charges (i.e. Inadvertent Energy, Marginal Loss Revenue Fund, Financial Transmission Rights (FTR) Auction Revenue Rights)
 - iv. Wholesale Market Service Charge (i.e. ISO Tariff Schedule 2 and 3 Expenses, NEPOOL Expenses)
- c. Capacity Avoided Costs (FCM charges)
- d. Line Loss Factors
- e. One size fits all for NEM systems vs. distinguishing between solar and other DG
- f. Applicable intervals
- g. DRIPE (Demand Reduction Induced Price Effect) i.e.. Energy market effects; less energy purchases lowers market clearing prices, lower wholesale demand lowers FCM clearing price
 - i. Energy
 - ii. Capacity
- h. Supply diversity and hedging benefits

II. Avoided Transmission Costs

- a. Regional Network Service (PTF or pooled transmission facilities)
- b. Local Network Service (non-PTF)
- c. Line Loss Factors

III. Avoided & Incurred Distribution Costs & Benefits

- a. Costs to Distribution grid, actual & potential
 - i. Cost to installers for interconnection
 - ii. Utility costs to process & integrate DER beyond those paid by installers
 - iii. Administrative & billing costs
 - iv. Other costs
- b. Benefits to Distribution grid, actual & potential
 - i. Avoided new capacity investments (NWA non wires alternatives)
 - ii. Equipment life extension
 - iii. Voltage and power quality support
 - iv. Other distribution benefits
- c. Locational Aspects
- d. Rate Design questions, fixed and variable components, demand charges, interval and flows for determining charges
- IV. Renewable Energy Credits (RECs), RPS Compliance and other miscellaneous charges (SBC, SCRC, Electricity Consumption Tax)
- V. Avoided Environmental Costs or Derived Benefits
 - a. NOx and CO2 compliance costs
 - b. Net social costs NOx, SO2, CO2, other pollutants (environmental externalities beyond compliance costs)
 - c. Other

VI. Other Non-energy Benefits

(e.g. economic development, job creation, tax revenue)

VII. Overarching - use of modeled vs. actual PV and other NEM hourly data

VIII. Utility Recovery of Lost Distribution Revenue

- a. Behind the meter consumption
- b. Bill credits for all exports

IX. Any size & eligibility limits

- a. Need there be any limits on DG capacity due to reliability or other engineering concerns? If so, how and when determined?
- b. Is there any basis or good reason to have any other size or eligibility limits on tariffs.
- X. Other market segmentation

Appendix D

The Benefits and Costs of Distributed Solar Generation in New Hampshire

This appendix presents a benefit-cost analysis of the impacts of distributed solar generation ("solar DG") on ratepayers in the service territories of the three investorowned utilities in New Hampshire – Eversource, Liberty, and Unitil. This work considers the benefits and costs of solar DG from the perspectives of all of the key stakeholders – solar DG customers, other ratepayers, and the system and society as a whole – who together constitute the public interest in the development of DG resources in New Hampshire. To consider all of these perspectives, we examine the benefits and costs of solar DG using the full set of cost-effectiveness tests for demand-side resources that commonly are used in the utility industry. We use a long-term, life-cycle analysis that covers the useful life of a solar DG system (25 years). This evaluates the benefits and costs of solar DG on the same basis as other utility resources on both the demand- and supply-sides.

The cost-effectiveness tests for demand-side resources use benefits and costs that we calculate using three principal analyses:

- An analysis of the **direct ratepayer benefits** of solar DG, in terms of the costs that the utilities will avoid as a result of solar DG development. These benefits are used in the Total Resource Cost ("TRC") and Ratepayer Impact Measure ("RIM") tests. In the Societal test, these direct benefits are supplemented by additional **societal benefits** that accrue to society as a whole.
- A calculation of the life-cycle **costs of installing and operating** solar DG systems, used in the Participant and TRC tests.
- Analysis of the **bill savings** which participating customers realize from their solar DG installations. This is the principal benefit for these customers in the Participant test. The bill savings are also **lost revenues** for the utility, which constitute the principal costs for non-participating ratepayers in the RIM test.

This report presents and discusses each of these analyses, for the three utilities.

1. Benefits of Solar DG

a. Avoided energy costs.

We calculate avoided energy costs based on ISO New England ("ISO-NE") locational marginal price ("LMP") data for New Hampshire. We calculate a PVweighted average of hourly day-ahead LMP prices for the year ending in the third quarter (3Q) of 2016 equal to about \$32 per MWh, with small differences among the three utilities based on slightly different solar output profiles.¹ This 2015-2016 energy price is then escalated to future years using a long-term forecast of natural gas market prices that is based, for the initial twelve years, on natural gas forward prices in the benchmark Henry Hub market and, in subsequent years, on the escalation in natural gas prices at the Henry Hub in the forecast in the Energy Information Administration's ("EIA") Annual Energy Outlook 2016, released in September 2016. This is the same approach used in the Maine Public Utilities Commission's March 2015 Maine Distributed Solar Valuation Study (Maine Study).² We separately escalate the portion of LMP prices that recovers allowance costs in the New England carbon market (the Regional Greenhouse Gas Initiative ["RGGI"]), based on our forecast of RGGI prices that is discussed in Section 1h below. We levelize the resulting 25-year forecast of solar-weighted LMPs using each utility's weighted average cost of capital ("WACC") as the discount rate. These levelized avoided energy costs are about \$63 per MWh after adjusting for the utility-specific distribution line losses that the utilities provided in discovery.

Availed Cost Component		Utilities	
Avoided Cost Component	Eversource	Liberty	Unitil
Levelized LMP	58.79	58.91	58.48
Line Losses	7.75%	6.90%	6.47%
Avoided Energy Cost Including Line Losses (\$/MWh)	63.35	62.98	62.27

Table D-1: Avoided Energy Cost (25-year levelized \$/MWh)

b. Avoided generation capacity costs

Our projection of avoided generation capacity costs is based on results from ISO-NE's forward capacity market ("FCM") Auctions 9 and 10,³ plus the projection for future avoided capacity costs included in the most recent regional forecast of avoided costs used for demand-side programs, *Avoided Energy Supply Costs in New England: 2015 Report*

http://www.maine.gov/mpuc/electricity/elect_generation/documents/MainePUCVOS-ExecutiveSummary.pdf.

³ See <u>http://www.iso-ne.com/static-assets/documents/2016/02/fca_10_result_report.pdf</u>.

¹ We used the National Renewable Energy Laboratory's ("NREL") Solar Advisor Model ("SAM") to calculate the output of representative solar PV systems in Manchester (Eversource), Concord (Unitil) and Lebanon (Liberty).

² Maine Public Utilities Commission, *Maine Distributed Solar Valuation Study* (March 1, 2015), hereafter "Maine Study." Available at

(2015 AESC).⁴ Based on this forecast of annual capacity values in the New England market, we determine a levelized capacity price (\$/kW-year) for each of the three utilities, again using the current WACC as the discount rate. We then convert this levelized price to an energy price equivalent (in \$/MWh) by dividing by expected annual solar production.

To determine the amount of capacity that a solar project provides, we perform a load match analysis that looks at the median of hourly PV capacity factors during the top 100 annual load hours in the New Hampshire zone on the ISO-NE system.⁵ We conduct this analysis using hourly loads in three years (2011, 2012, and 2013) and average the annual results. In this analysis, we used actual solar insolation data from 2011-2013 to calculate PV system output using SAM, in order to obtain a more accurate correlation between solar output and actual utility loads in these years.⁶ In other words, using actual loads and solar insolation recognizes that hot, sunny, summer days when electric loads are high also tend to be days with high PV output. If typical meteorological year (TMY) data were used for solar output, this correlation would be lost. In fact, the load match factors would be over 20% lower using TMY data for solar output.

Availed Cost Component		Utilities	and the state of the
Avoided Cost Component	Eversource	Liberty	Unitil
Levelized Net CONE (\$/kW-year)	165.21	163.77	162.12
÷ Solar Output (kWh per kW-AC)	1,324	1,274	1,424
= Generation Capacity Cost (\$/MWh)	124.87	128.52	113.83
x PV Load Match (%)	48.8%	40.2%	50.9%
+ Line Losses (%)	7.75%	6.90%	6.47%
= Avoided Generation Capacity (\$/MWh)	65.62	55.26	61.66

Fable D-2: Avoide	d Generation	Capacity	Costs	(25-year)	levelized	\$/MWh)
--------------------------	--------------	----------	-------	-----------	-----------	--------	---

We estimate that an additional capacity reserve margin of 14.3% is needed to capture the long-term resource adequacy requirements in New England. The ISO-NE uses an indicative 14.3% reserve margin for future years in its 2015 Regional System Plan.⁷ As a result of this reserve capacity requirement, generating capacity must be purchased to cover 114.3% of peak loads to provide the reserve margin necessary to ensure system reliability given contingencies and variations in peak loads.

⁴ See 2015 AESC, at Appendix B., Tables One and Two for New Hampshire. This report is available at https://www9.nationalgridus.com/non_html/eer/ne/AESC2015%20merged%20report.pdf.

⁵ See *Maine Study*, at pp. 24-25.

⁶ New Hampshire solar insolation in 2011-2013 is taken from Clean Power Research's *Solar Anywhere* database.

⁷ See ISO-NE, 2015 Regional System Plan, at pp. 65 and 67.

Avoided Cost Component	Utilities		
Avoided Cost Component	Eversource	Liberty	Unitil
Avoided Generation Capacity (\$/MWh)	65.62	55.26	61.66
x Planning Reserve Margin (%)	14.3%	14.3%	14.3%
= Avoided Generation Capacity Reserve (\$/MWh)	9.38	7.90	8.82

Table D-5: Avoided Generation Capacity Reserves (25-year levelized \$/M	Table D-3:
--	------------

c. Avoided transmission capacity costs

The majority of the output of solar DG serves on-site loads and never touches the grid, and thus clearly reduces loads on the transmission system. For the minority of power that a solar DG unit exports to the grid, these exports are likely to be entirely consumed on the distribution system by the solar customer's neighbors, unless solar penetration is very high. Thus, like energy-efficiency and demand response resources, solar DG reduces load growth and displaces traditional generation sources that must use the utility transmission system to be delivered to customers. As a result, solar DG will avoid transmission capacity costs to the extent that solar production occurs during the peak demand periods that drive transmission costs.

We calculate avoided transmission costs using ISO-NE's Regional Network Load (RNL) transmission costs for New Hampshire, for the year ending May 2016.⁸ There was a significant increase in these costs which took effect on June 1, 2015. We escalate these costs based on the forecast of these costs that is included in the ISO-NE 2015 *Regional System Plan*,⁹ then at a 2% annual inflation rate thereafter, and levelize them using the utility WACCs. Because ISO-NE allocates these costs based on monthly peak loads, the PV Load Match factor is calculated as the average reduction in each utility's 12 monthly coincident peak demands ("12 CP") due to PV output, per kW of PV nameplate capacity. Again, this set of load match factors is also computed using actual 2011-2013 loads and solar insolation.

We have not developed marginal costs for transmission facilities that the New Hampshire utilities operate that are not part of the ISO-NE regional network, so these avoided transmission capacity costs may be conservative.

⁸ See ISO-NE, *Monthly Regional Network Load Cost Report* (July 2016), at Table 8-1. Available at <u>http://www.iso-ne.com/markets-operations/market-performance/load-costs</u>.

ISO-NE, 2015 Regional System Plan, at p. 111 (Table 6-2).

Avoided Cost Component		Utilities	
Avoided Cost Component	Eversource	Liberty	Unitil
RNL Transmission Costs (\$/kW-year)	105	105	105
RNL Transmission Costs – NH (\$/kW-year) – 25-year levelized	136.67	136.15	135.56
÷ Solar Output (kWh per kW-AC)	1,324	1,274	1,424
Transmission Capacity Cost (\$/MWh)	103.21	106.84	95.19
x PV Load Match using 12 CP (%)	17.6%	14.9%	17.1%
+ Line Losses (%)	7.75%	6.90%	6.47%
Avoided ISO-NE TransmissionCapacity (\$/MWh)	19.58	17.06	17.28

I ADIC D-4. Avolueu ISO-INE IT unismussion Cosis (25-yeur levenizeu \$\phi/1414)	Table D-4:	Avoided ISO-NE	Transmission	Costs (25-	year levelized \$	MW
---	------------	----------------	--------------	------------	-------------------	----

d. Market price response (DRIPE)

We have incorporated data from the 2013 and 2015 AESC reports on the market price reductions that will result from the on-site solar distributed generation in New Hampshire that serves load directly. This market benefit is also known as the demand reduction induced price effect, or DRIPE. There is a significant difference in the DRIPE impacts in New Hampshire between the 2013 and 2015 AESC reports, as a result of significant changes in the methodology for the DRIPE calculations in the 2015 AESC.¹⁰ For example, the 2015 AESC assumes (1) a much shorter duration for energy DRIPE impacts (three years) and (2) zero capacity DRIPE as a result of an assumed near-term need for new capacity in New England. We have not attempted to resolve these differences, but have used the average of the DRIPE impacts between the two studies. For capacity DRIPE, we use the 2015 AESC assumption of zero capacity DRIPE as it is consistent with our avoided capacity cost forecast.

Avaided Cost Component	Utilities			
Avoided Cost Component	Eversource	Liberty	Unitil	
Levelized LMP	63.35	62.98	62.27	
DRIPE Benefit (% of LMP)	4.14%	4.30%	4.46%	
+ Line Losses (%)	7.75%	6.90%	6.47%	
DRIPE Benefit (\$/MWh)	2.82	2.89	2.96	

Table D-5: DRIPE (25-year levelized \$/MWh)

¹⁰ See 2015 AESC, at pages 1-5 and 1-16 to 1-17.

e. Avoided fuel price uncertainty

Solar DG displaces natural gas, and thus reduces the exposure of New Hampshire ratepayers to the future uncertainty and volatility in natural gas prices. To calculate this benefit, we follow the methodology used in the *Maine Study*. This approach recognizes that one could contract for future natural gas supplies today, and then set aside the money to buy that gas in the future in risk-free investments. This would eliminate the uncertainty in future gas costs. The additional cost of this approach compared to purchasing gas on an "as you go" basis (and using the money saved for alternative investments) is the benefit of reducing the uncertainty in the costs for the fuel that solar DG displaces.

Avoided Cost Component	Utilities			
Avoided Cost Component	Eversource	Liberty	Unitil	
Avoided Fuel Price Uncertainty (\$/MWh)	25.45	27.44	29.75	
+ Line Losses (%)	7.75%	6.90%	6.47%	
Avoided Fuel Price Uncertainty (\$/MWh)	27.43	29.33	31.67	

Table D-6: Avoided Fuel Price Uncertainty (25-year levelized \$/MWh)

f. Avoided distribution capacity costs

Distributed solar generation can reduce peak loads on distribution circuits, and thus avoid or delay the need to upgrade or re-configure the circuit if it is approaching capacity. The majority of solar DG output serves the on-site load and will never flow onto the distribution system, and thus reduces the loads served from the local distribution system. In addition, exports from solar DG to the distribution system serve local loads, and thus unload upstream portions of the distribution system. Over the 25-year life of DG systems, these load reductions will avoid or defer distribution system expansions or upgrades and extend the life of existing equipment.

The extent to which solar generation avoids distribution capacity costs is a more complex question than for transmission. Distribution substations and circuits can peak at different times than the system as a whole, which complicates the calculation of by how much solar DG can reduce distribution loads and avoid distribution capacity costs. As DG penetration grows, and a deeper understanding is gained of the impacts of DG on distribution circuit loads, utility distribution planners will integrate existing and expected DG capacity into their planning, enabling DG to avoid distribution capacity costs.¹¹ A comparable evolution has occurred over the last several decades, as the long-term

¹¹ Moving forward, with the advent of smart inverters and other technologies, PV systems will be able to provide additional services and avoid additional costs than those attributable to capacity expansion alone. Such services include voltage regulation, power quality, and conservation voltage reduction. For these reasons, the existing estimates of marginal distribution costs should be considered conservative.

impacts of energy efficiency and demand response programs are now incorporated into utilities' capacity expansion plans, and it is generally recognized that these demand-side programs can help to manage demand growth even though the specific locations where these resources will be installed are difficult to predict.

Our calculation of avoided distribution capacity costs begins with the utilities' marginal distribution costs. We use the marginal distribution capacity costs which Liberty and Unitil recently filed at the Commission; these marginal costs are based on regression analyses of the relationship between distribution capital additions and load growth. We performed a similar regression analysis for Eversource, which does not have a recent marginal cost study, using FERC Form 1 data.

We then allocate these marginal distribution costs to the high-demand hours of the year using an allocation based on a set of hourly "peak capacity allocation factors" ("PCAFs") derived from 2015 hourly data on distribution substation loads for each utility.¹² The PCAFs are based on hourly substation loads that are within 10% of the annual peak load at each substation, using this formula:

$$PCAF_{s}(h) = \frac{(Load_{s}(h) - Threshold_{s})}{\sum_{k=1}^{8760} Max[0, (Load_{s}(k) - Threshold_{s})]}$$

where:

 $PCAF_s(h) = peak capacity allocation factor for substation s in hour h, Load_s(h) = the load for substation s in hour h, and Threshold_s = 90% of the substation s annual peak load.$

All hours where the substation load is below 90% of the annual peak are excluded from the calculation of hourly PCAFs. The resulting hourly profile of PCAFs across all of the utility's substations is used to allocate the utility's marginal distribution capacity costs to each hour. Finally, these hourly avoided distribution costs are applied to the hourly output profile of solar DG to calculate avoided distribution capacity costs. This step is shown graphically in **Figure D-1**. The resulting avoided distribution capacity costs are presented in **Table D-7**. The solar- and PCAF-weighted avoided distribution

¹² This approach has been used in the "Public Tool" benefit/cost model of renewable DG developed by Energy and Environmental Economics (E3) for the California Public Utilities Commission ("CPUC"), and used to determine avoided sub-transmission and distribution capacity costs for the California electric utilities. The CPUC's Public Tool model and the association documentation are available at http://www.cpuc.ca.gov/general.aspx?id=3934. The marginal subtransmission and distribution costs are shown in Lines 323-350 of the "Avoided Cost Calcs" tab; the PCAF allocation factors by TOU period are listed in Lines 352-371 of the same tab. The PCAF method also has been used in Colorado. See Crossborder Energy, *Benefits and Costs of Solar Distributed Generation for the Public Service Company of Colorado: A Critique of PSCo's Distributed Solar Generation Study* at pp. 9-11 (December 2, 2013). This study was filed in Colorado Public Utilities Commission Docket No. 13A-0836E on behalf of TASC.

costs, divided by total marginal distribution costs, yield an aggregate PV load match factor at the distribution level, which is also shown in Table D-7.

	Table D-7:	Avoided Distribution	Capacity Costs	(25-vear	levelized \$/MW
--	------------	----------------------	----------------	----------	-----------------

Ausidad Cast Component	Utilities			
Avoided Cost Component	Eversource	Liberty	Unitil	
Marginal Distribution Costs (\$/kW-year)	133.14	127.61	91.26	
÷ Solar Output (kWh per kW-AC)	1,324	1,274	1,424	
= Distribution Capacity Cost (\$/MWh)	100.55	100.14	64.08	
x Effective PV Load Match using Distribution Substation PCAFs (%)	22.3%	29.3%	25.8%	
= Avoided Distribution Capacity (\$/MWh)	22.46	29.36	16.55	

g. Integration and program administration costs

Next, we subtract certain costs from the benefits. First, we subtract an estimate of solar integration costs of \$2 per MWh, based on costs from the New England Wind Integration Study.¹³ Finally, we add 0.3 cents per kWh for the levelized cost of utility administration of the DG program, from the detailed data on such costs that was assembled last year for the California Public Tool model referenced above.¹⁴

h. Societal benefits

Renewable DG has benefits to society that do not directly impact utility rates. When renewable generation takes the place of conventional fossil fuel generation, all citizens benefit from reductions in air pollutants that harm human health and exacerbate climate change. Demand on existing water supplies is reduced, avoiding the potential need to acquire new sources of supply. Distributed generation, by siting energy generation in the built environment, results in more land being available for other uses, or as natural habitat. Distributed generation makes the power system more resilient, and stimulates the local economy. Many of these benefits can be quantified, as discussed below. We use a lower, societal discount rate of 3% in calculating these benefits, rather than the utility WACCs used for the direct benefits.

Our societal benefits use the Environmental Protection Agency's ("EPA") "AVoided Emissions and geneRation Tool" (AVERT) to calculate the avoided emissions due to solar DG installations in New Hampshire. AVERT calculates hourly avoided emissions based on a given energy efficiency or renewable energy program. Our model assumes 40 MW of DG solar in the state, uses a PV profile for Concord, and the Northeast AVERT regional data file to calculate the avoided emissions in New Hampshire. The avoided emissions for 2015 are shown below.

Dellutent	Avoided	Emissions
Pollutant	lbs	lbs/MWh
SO2	31,400	0.617
NOx	33,100	0.650
CO2	27,400	0.538

Table D-8: 2015 Avoided Emissions

The value of these avoided emissions is calculated as follows:

¹³ This estimate is based on the Maine Study's calculation that a 2.5% penetration of wind resources in New England would require additional operating reserves equal to 1.75% of the wind capacity. See Maine Study, at p. 80. We use 1.75% of the avoided generation capacity costs (before the load match factor) in Table D-2 above. This estimate is also consistent with other solar integration studies in the U.S., such as the studies referenced in footnote 7 of the accompanying testimony.

⁴ See footnote 12 above.

- 1. Determine the amount of avoided emissions using AVERT as described above.
- 2. Calculate the social cost of the avoided emissions and subtract the market value of those emissions.

Carbon. The total social cost of carbon is taken from the EPA's 2015 revision of the *Social Cost of Carbon for Regulatory Impact Analysis*.¹⁵ The EPA calculates the social cost of carbon from 2015-2050 in five year intervals. In this analysis, intermediate years between the five year intervals are interpolated. For the market value of carbon (which we include in avoided energy costs), we extend recent RGGI auction prices through 2021, after which we use the forecasted market value of carbon in Synapse Energy Economic's *Spring 2016 National Carbon Dioxide Price Forecast*.¹⁶ Forecasted market CO₂ values for the years 2016 – 2040 are subtracted from the EPA's social cost of carbon to determine the net social cost of carbon.

SO₂. The analysis for SO₂ follows the same steps as the analysis for carbon. The total social cost of SO₂ is taken from the EPA's *Regulatory Impact Analysis for the Final Clean Power Plan (CPP Impact Analysis).*¹⁷ The EPA calculated social cost values for 2020, 2025, and 2030. This analysis uses the values given for these three years assuming a 3% discount rate. Values for intermediate years are interpolated between the five-year values. The market value of SO₂ is taken from the EPA's 2016 SO₂ allowance auctions. However, the final clearing price of the latest spot auction was \$0.06 per ton.¹⁸ This is low enough compared to the social cost that it is negligible for our calculations.

NOx. The social cost of NOx is the social cost from the EPA's *CPP Impact* Analysis.¹⁹ There is no compliance market price for NOx in the Northeast.²⁰

Local Economic Benefits. Distributed generation has higher costs per kW than central station renewable or gas-fired generation. However, a portion of the higher costs – principally for installation labor, permitting, permit fees, and customer acquisition (marketing) – is spent in the local economy, and thus provides a local economic benefit in close proximity to where the DG is located. These local costs are an appreciable portion of the "soft" costs of DG. In contrast, central station power plants have significantly lower soft costs, per kW installed, and often are not located in the local area where the power is consumed.

¹⁵ Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866 (May 2013, Revised July 2015). Available at:

https://www3.epa.gov/climatechange/Downloads/EPAactivities/social-cost-carbon.pdf. ¹⁶ Spring 2016 National Carbon Dioxide Price Forecast. Found at: <u>http://www.synapse-energy.com/sites/default/files/2016-Synapse-CO2-Price-Forecast-66-008.pdf</u>.

¹⁷ Regulatory Impact Analysis for the Final Clean Power Plan. Found at: https://www.epa.gov/sites/production/files/2015-08/documents/cpp-final-rule-ria.pdf.

¹⁸ EPA 2016 SO2 Allowance Auction. Found at: <u>https://www.epa.gov/airmarkets/2016-so2-allowance-auction</u>.

¹⁹ CPP Impact Analysis, at Table 4-7.

²⁰ See the EPA Cross State Air Pollution Rule. Found at: <u>https://www3.epa.gov/crossstaterule/</u>

There have been a number of recent studies of the soft costs of solar DG, as the industry has focused on reducing such costs, which are higher in the U.S. than in other major international markets for solar PV. The following tables present data from detailed surveys of solar installers conducted by two national labs (LBNL and NREL), which break out the soft costs that are likely to be spent in the local area where the DG customer resides.

Local Costs	LBNL – J. S	Seel et al. ²¹	NREL – B. Friedman <i>et al.</i> ²²	
	\$/watt	%	\$/watt	%
Total System Cost	6.19	100%	5.22	100%
Local Soft Costs				
Customer acquisition	0.58	9%	0.48	9%
Installation labor	0.59	10%	0.55	11%
Permitting & interconnection	0.15	2%	0.10	2%
Permit fees	0.09	1%	0.09	2%
Total local soft costs	1.41	22%	1.22	23%

Table D-9: Residential Local Soft Costs

Table D-10: Commercial Local Soft Costs

	NREL – B. Friedman et al.			
Local Costs	Small Commercial		Large Commercial	
	\$/watt	%	\$/watt	%
Total System Cost	4.97	100%	4.05	100%
Local Soft Costs	S	1.1275	D. W. Dunis it's	a history
Customer acquisition & marketing	0.13	3%	0.03	1%
Installation labor	0.39	8%	0.17	5%
Permitting & interconnection	0.01	0.2%	0.00	0%
Permit fees	0.07	1%	0.04	1%
Total local soft costs	0.60	12%	0.24	6%

These local economic benefits occur in the year when the DG capacity is initially built. We have converted these benefits into a \$ per kWh benefit over the expected DG lifetime that has the same NPV in 2016 dollars. We also use more recent (and lower) solar DG capital costs than the system costs used in the LBNL and NREL studies. The result is a societal benefit of 4.6 cents per kWh of DG output for residential systems and

 ²¹ J. Seel, G. Barbose, and R. Wiser, *Why Are Residential PV Prices So Much Lower in Germany than in the U.S.: A Scoping Analysis* (Lawrenece Berkeley National Lab, February 2013), at pp. 26 and 37.
 ²² B. Friedman et al., *Benchmarking Non-Hardware Balance-of-System (Soft) Costs for U.S. Photovoltaic*

Systems, Using a Bottom-Up Approach and Installer Survey – Second Edition (National Renewable Energy Lab, October 13, 2013), at Table 2.

2.7 cents per kWh for commercial, or an average of 3.8 cents per kWh assuming 56% residential systems, 44% commercial.²³

 Table D-11 summarizes the societal benefits we have calculated.

Table D-II: Societal Benefits (2)-vear levelize
--

Benefit	Value
Social cost of carbon – reduced damages	23.23
Health benefits - lower PM-2.5 and NOx emissions	36.40
Local economic benefits	38.24
Total Societal Benefits	97.86

i. Summary of Benefits.

Table D-12 summarizes the benefits discussed above. See also Figure ES-1.

Anaided Cost Component	Utilities			
Avoided Cost Component	Eversource	Liberty	Unitil	
Direct				
Energy	63.35	62.98	62.27	
Generation Capacity	65.62	55.26	61.66	
Generation Capacity Reserves	9.38	7.90	8.82	
Solar Integration Costs	(2.00)	(2.00)	(2.00)	
ISO-NE Transmission Capacity	19.58	17.06	17.28	
Distribution	22.46	29.36	16.55	
Market price response (DRIPE)	2.82	2.89	2.96	
Program administration	(3.00)	(3.00)	(3.00)	
Avoided Fuel Price Uncertainty	27.43	29.33	31.67	
Total Direct Benefits	205.64	199.79	196.20	
Societal	webs of the number	d symonode have	DEPLICIT	
Carbon	23.23			
Criteria Pollutants (SOx and NOx)	36.40			
Local economic benefits	38.24			
Total Societal Benefits	97.86			
Total Benefits				
Direct and Societal	303.50	297.70	294.10	

Table D-12: Summary of Solar DG Benefits (25-year levelized \$/MWh)

²³ This is the current distribution between residential and commercial customers of the 40 MW of solar DG systems now online in the three utility service territories, based on data provided in discovery.

2. Costs of Solar DG for Participants

We have used a pro forma cash flow analysis to project the lifecycle cost of a solar DG system based on 2014-2015 solar system costs in New Hampshire surveyed and reported by Lawrence Berkeley National Lab ("LBNL") in their annual *Tracking the Sun* report.

LBNL's most recent *Tracking the Sun VII and LX* reports from August 2015 and August 2016 include the results of their extensive survey of the trends in solar prices in 2014 and 2015. LBNL's authoritative price surveys of PV installations are based on data from almost one-half of the 965,000 solar PV systems installed in the U.S. through calendar year 2015.²⁴ **Table D-13** shows this price data for New Hampshire for 2014 and 2015. Residential PV system costs in 2015 actually increased slightly compared to 2014. We have used the lower of 2014 or 2015 costs in our model.

Market Segment	Cost	Solar PV Costs (\$ per watt DC)		
	Percentile	2014	2015	Model
Residential (< 10 kW)	Median	3.60	3.90	3.60
	20%	3.20	3.40	3.20
	80%	4.50	4.50	4.50
Small Commercial (10 kW to 500 kW)	Median	3.40	3.30	3.30
	20%	3.00	3.00	3.00
	80%	4.00	3.80	3.80

Table D-13: 2014 and 2015 Solar PV Installed Price Data for New Hampshire²⁵

Our principal assumptions in the residential cash flow analysis are summarized in **Table D-14**. We include the modest state incentive as a reduction in participant costs, and also assume that about 50% of solar customers will face property taxes equal to 2% of their system's assessed value.²⁶ Our analysis also uses typical solar loan terms now offered in New Hampshire.

²⁴ LBNL, *Tracking the Sun IX* (August 2016), at p. 1. These reports are available at <u>https://emp.lbl.gov/sites/all/files/lbnl-188238_1.pdf</u> and

https://emp.lbl.gov/sites/all/files/tracking the sun ix report.pdf.

 ²⁵ LBNL, *Tracking the Sun VIII* (August 2015), data for Figures 19 and 20, and *Tracking the Sun IX* (August 2016), data for Figures 18 and 19.
 ²⁶ Towns in New Hampshire can offer property tax exemptions or reductions for solar systems, and about

²⁶ Towns in New Hampshire can offer property tax exemptions or reductions for solar systems, and about 50% do. See <u>https://www.nh.gov/oep/energy/saving-energy/documents/dra-solar-exemption-report.pdf</u> and <u>https://www.nh.gov/oep/energy/saving-energy/documents/solar-repte.pdf</u>.

Assumption	Value	
Median Cost	\$3.60 per watt DC	
Range of Costs (20 th to 80 th percentiles)	\$3.20 - \$4.50 per watt DC	
Federal ITC	30%	
State incentive	\$0.50/watt-AC, up to \$2,500	
Financing Cost	3%	
Participant discount rate	5%	
Financing Term	12 years	
Property taxes	1% of original cost	
Inverter Replacement	\$700/kW in Year 15	
Maintenance Cost	\$26 per kW-year	

Table D-14: Key Assumptions for the Residential Cost of Solar

The assumptions for the levelized costs of small commercial systems are similar, with the addition that commercial systems qualify for accelerated depreciation and are subject to different tax treatment as businesses. **Table D-15** shows the resulting levelized costs of solar energy ("Solar LCOEs") for residential and small commercial customers.

Market / Installation Cost	Utilities			
	Eversource	Liberty	Unitil	
Residential	53%	74%	73%	
Median	0.176	0.183	0.163	
20 th Percentile	0.159	0.165	0.148	
80 th Percentile	0.213	0.221	0.198	
Commercial	47%	26%	27%	
Median	0.146	0.149	0.140	
20 th Percentile	0.141	0.144	0.136	
80 th Percentile	0.154	0.157	0.147	

Table D-15: Summary of Solar LCOEs (25-year levelized \$/kWh)

3. Bill Savings for Participants / Lost Revenues for Non-participating Ratepayers

A primary benefit of solar DG for the customers who install it are the savings that they realize on their utility bills, as a result of the retail rate credits provided through net metering. At the same time, these bill savings also are the primary costs of net metering for non-participating ratepayers, because they are the revenues that the utility loses as a result of DG customers serving their own load.

We have modeled the long-term bill savings that solar customers will realize under the principal residential and small commercial rate schedules for the three utilities. We have modeled the savings assuming a solar system sized to serve 80% of the

customer's annual usage, although for most schedules the assumed system size does not have a strong impact on the bill savings. The savings decline over time due to the 0.5% annual degradation in solar output. For the default supply rate, we have developed a model of future default supply rates by analyzing the recent observed relationship between these rates and LMP and capacity market prices in New Hampshire, and then applying this relationship to our forecast of avoided energy and generation capacity prices. In this way, our bill savings and avoided cost benefit models use consistent escalation rates. We assume that the remaining components of utility rates will escalate with inflation.

The current mix of residential and commercial systems installed in 2015 for all three utilities, by installed PV system capacity, is 56% residential and 44% commercial. The share of commercial systems in Eversource's territory (47%) is much higher than for the two smaller utilities (26% and 27%). We assume that this distribution of residential and commercial systems will continue. With this mix, the average levelized bill savings across both the residential and commercial markets is about 15-17 cents per kWh, as shown in the table below.

Table D-16 summarizes the modeled bill savings / lost revenues for the residential and commercial customers of the three utilities.

Markat		Utilities	
Iviai Ket	Eversource	Liberty	Unitil
Residential		and was him	CHR4 Sh
Distribution of Systems	53%	74%	73%
Bill Savings / Lost Revenues	0.201	0.192	0.195
Commercial			n - Innind?
Distribution of Systems	47%	26%	27%
Bill Savings / Lost Revenues	0.151	0.140	0.157
Combined Residential and Commercial		R. ANN STREET	Seal of the seal of the
Distribution of Systems	100%	100%	100%
Bill Savings / Lost Revenues	0.177	0.179	0.184

 Table D-16: Bill Savings / Lost Revenues (25-year levelized \$/kWh)

4. Results of the Standard Practice Manual Tests

The tables above provide the three principal sets of benefits and costs necessary to apply the principal *Standard Practice Manual* tests to solar DG in New Hampshire:

- A. Table D-12: avoided cost benefits of DG (benefits in the TRC and RIM tests)
- B. Table D-15: LCOE of solar DG (costs in the TRC and Participant tests)
- C. Table D-16: bill savings/lost revenues (benefits for Participants/costs in RIM test)

Table D-17 summarizes these benefits and costs, and shows the SPM test results for the residential and commercial markets separately, and for both markets combined. Please note that we show the final benefits and costs in 25-year levelized <u>cents</u> per kWh.

Cost on SDM Tost	Utilities		
Cost or SPWI Test	Eversource	Liberty	Unitil
Residential	53%	74%	73%
Costs (25-year levelized cents/kWh)			
A1. Direct Avoided Cost Benefits	20.6	20.0	19.6
A2. Societal Avoided Cost Benefits	9.8	9.8	9.7
B. LCOE of Solar for Participants	17.6	18.3	16.3
C. Bill Savings / Lost Revenues	20.1	19.2	19.5
SPM Test Results	polyppes With this	o they must be t	ind up Name
$TRC - A1 \div B$	1.17	1.09	1.20
Societal – A2 ÷ B	1.73	1.63	1.80
Participant – $C \div B$	1.14	1.05	1.19
$RIM - A1 \div C$	1.03	1.04	1.01
Commercial	47%	26%	27%
Costs (25-year levelized cents/kWh)			
A1. Avoided Cost Benefits	20.6	20.0	19.6
A2. Societal Avoided Cost Benefits	9.8	9.8	9.7
B. LCOE of Solar for Participants	14.6	14.9	14.0
C. Bill Savings / Lost Revenues	15.1	14.0	15.7
SPM Test Results			
$TRC - A1 \div B$	1.41	1.34	1.40
Societal – A2 \div B	2.08	2.00	2.09
Participant – $C \div B$	1.03	0.94	1.12
$RIM - A1 \div C$	1.37	1.42	1.25
Combined Residential & Commercial	100%	100%	100%
Costs (25-year levelized cents/kWh)		Strugger (concurrence	
A1. Avoided Cost Benefits	20.6	20.0	19.6
A2. Societal Avoided Cost Benefits	9.8	9.8	9.7
B. LCOE of Solar for Participants	16.2	17.4	15.7
C. Bill Savings / Lost Revenues	17.7	17.9	18.4
SPM Test Results		a construction of the	ne rue can statu
$TRC - A1 \div B$	1.27	1.15	1.25
Societal – $A2 \div B$	1.88	1.71	1.87
Participant – $C \div B$	1.10	1.03	1.17
$RIM - A1 \div C$	1.16	1.12	1.06

 Table D-17: Standard Practice Manual Test Results